小样本下基于三元组原型网络的电压暂降类型识别方法  被引量:2

Identification Method of Voltage Sag Types Based on Triplet Prototype Network Under Small Samples

在线阅读下载全文

作  者:肖函雪 王红 齐林海 薛彤丹 XIAO Hanxue;WANG Hong;QI Linhai;XUE Tongdan(School of Control and Computer Engineering,North China Electric Power University,Changping District,Beijing 102206,China)

机构地区:[1]华北电力大学控制与计算机工程学院,北京市昌平区102206

出  处:《电网技术》2023年第9期3884-3894,共11页Power System Technology

摘  要:区域电网中电压暂降标签样本量有限,传统深度神经网络在小样本下难以进行有效学习,实际工程中应用困难。文章提出了一种小样本下基于三元组原型网络的电压暂降识别模型。使用有限的训练样本构建电压暂降三元组,并对三元组进行关系学习来提取暂降特征。增加高效通道注意力机制捕捉样本的跨通道特征交互信息,使模型在提取的特征分布具有高类内聚合性与类间可分离性。使用原型分类器对样本特征与类原型进行相似度对比来判定样本类别,保证了模型的分类鲁棒性。文章分别使用仿真数据与实测数据进行验证。实验表明,相较于传统模型,该方法能够在小样本下实现准确的电压暂降分类效果。The number of voltage sag labels in the regional power grid is limited,and traditional deep neural networks are difficult to learn effectively under small samples,and it is difficult to apply in practical engineering.This paper proposes a voltage sag identification model based on triple prototype network under small samples.Voltage sag triples are constructed using limited training samples,and relational learning is performed on the triples to extract sag features.An efficient channel attention mechanism is added to capture the cross-channel feature interaction information of samples,so that the model has high intra-class aggregation and inter-class separability in the extracted feature distribution.The prototype classifier is used to compare the similarity between the sample features and the class prototype to determine the sample category,which ensures the classification robustness of the model.In this paper,simulation data and measured data are used for verification.Experiments show that,compared with the traditional model,the method in this paper can achieve accurate voltage sag classification in small samples.

关 键 词:电压暂降 小样本 三元组原型网络 高效通道注意力机制 深度学习 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象