面向电力大数据的云审计研究与应用  被引量:1

Research and Application of Cloud Audit for Electric Power Big Data

在线阅读下载全文

作  者:董美玲 周榴照 章桢 万静文 尹亮 庄严 DONG Meiling;ZHOU Liuzhao;ZHANG Zhen;WAN Jingwen;YIN Liang;ZHUANG Yan(State Grid Changzhou Power Supply Branch,Jiangsu Electric Power Co.,Ltd.,Changzhou 21300,Jiangsu,China)

机构地区:[1]国网江苏省电力有限公司常州供电分公司,江苏常州213000

出  处:《电力大数据》2023年第4期90-96,共7页Power Systems and Big Data

摘  要:随着电网数字化转型的深入开展,电力大数据时代悄然而至,也为电网企业的内部审计带来了挑战,大数据等新技术的推广应用为革新审计模式开拓了新的思路。在此背景下,基于信息融合技术和数据挖掘技术,本文搭建了具备“开放、融合、动态、智能”特点的面向电力大数据的云审计平台,实现电网全业务领域审计数据资源共享。借助该平台,审计人员可以及时、准确地获取数字化审计需要的全业务数据,实现跨系统、跨业务数据分析,并可通过自主搭建审计分析模型,捕获疑点,筛查线索。通过配网项目全过程监督评价模型实践应用,充分验证了云审计可以有效提升审计效率和质量,对防范和化解电网企业经营管理风险起到了积极的促进作用。With the deepening of the digital transformation of the power grid,the era of power big data has quietly arrived,posing challenges to internal auditing in power grid enterprises.The promotion and application of new technologies such as big data have opened up new avenues for innovative auditing models.In this context,based on information fusion technology and data mining technology,this paper establishes a cloud auditing platform for power big data with the characteristics of"openness,integration,dynamism,and intelligence"realizing the sharing of audit data resources in the entire business scope of the power grid.With the help of this platform,auditors can timely and accurately access the comprehensive business data needed for digital auditing,perform cross-system and cross-business data analysis,and capture suspicious points and screen clues through the construction of independent auditing analysis models.The practical application of the comprehensive supervision and evaluation model for distribution network projects fully verifies that cloud auditing can effectively enhance auditing efficiency and quality,playing a positive role in preventing and resolving operational and management risks in power grid enterprises.

关 键 词:信息融合技术 数据挖掘技术 电力大数据 云审计 数字化审计模型 

分 类 号:F239[经济管理—会计学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象