四诊在小儿体质辨识智能化研究中应用初探  被引量:1

Research on Application of Four Diagnostic Methods in Intelligent Research of Children's Physical Fitness Recognition

在线阅读下载全文

作  者:马伶俐 侯江红[2] MA Lingli;HOU Jianghong(Henan University of Traditional Chinese Medicine,Zhengzhou 450000,Henan,China;Henan Hospital of Traditional Chinese Medicine,Zhengzhou 450000,Henan,China)

机构地区:[1]河南中医药大学,河南郑州450000 [2]河南省中医院,河南郑州450000

出  处:《辽宁中医杂志》2023年第8期51-54,共4页Liaoning Journal of Traditional Chinese Medicine

基  金:国家重点研发计划中医药现代化研究重点专项(2018YFC1704704)。

摘  要:随着人工智能技术的迅速发展,各学科与人工智能的融合已逐渐成为主流的发展趋势[1]。研究使用人工智能技术逐步提升中医体质辨识的准确率与效率,对于在下一阶段最终达到体质辨识的智能化有着很大的现实意义。《医门法律》言:“望闻问切,医之不可缺一。”中医四诊从不同角度、不同侧重点诊查疾病,互为补充,对于辨证及辨体起着重要的作用[2]。故该文对四诊在体质辨识中的应用进行总结、规范和梳理,以期提高体质辨识流程的客观性、准确性,从而更好地提取医学数据中的特征,转化为深度学习可利用的知识,为体质辨识的智能化研究提供前期理论工作基础。With the rapid development of artificial intelligence technology,the integration of various disciplines and artificial intelligence has gradually become the mainstream development trend[1].Researching the use of artificial intelligence technology to gradually improve the accuracy and efficiency of TCM physical identification has great practical significance for achieving the intelligentization of physical identification in the next stage.Medical Law said:“Inspecting,hearing and smelling and asking are indispensable for diagnosing.”The four diagnostic methods of traditional Chinese medicine complement each other from different angles and different focuses and play an important role in differentiation of syndromes and bodies[2].Therefore,this article summarized,standardized and sorted out the application of the four diagnostic methods in physical identification,so as to improve the objectivity and accuracy of the physical identification process,better extract the features from the medical data and transform them into knowledge that can be utilized for deep learning,providing a theoretical foundation for the intelligent research of physique identification in the early stage.

关 键 词:体质辨识 人工智能 中医四诊 小儿偏颇体质 

分 类 号:R241.2[医药卫生—中医诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象