融合BERT和阻塞过滤的国家电网公共数据模型实体映射技术  

An entity mapping technology of national grid public data model integrating BERT and congestion filtering

在线阅读下载全文

作  者:李雨霏 郝保聪 楼轶维 杨诗语 高士杰 张鹏宇 LI Yufei;HAO Baocong;LOU Yiwei;YANG Shiyu;GAO Shijie;ZHANG Pengyu(Big Data Center of State Grid Corporation of China,Beijing 100053,China;School of Computer Science,Peking University,Beijing 100871,China;Beijing Zhongdian Puhua Information Technology Co.,Ltd.,Beijing 100085,China)

机构地区:[1]国家电网有限公司大数据中心 [2]北京大学计算机学院 [3]北京中电普华信息技术有限公司

出  处:《科技导报》2023年第15期113-123,共11页Science & Technology Review

基  金:国网大数据中心科技项目(SGSJ0000SJJS2200040)。

摘  要:针对目前国家电网公共数据模型SG-CIM(state grid-common information model)难以实现自动更新迭代和挖掘新元素效率较低等问题,提出了一种基于知识图谱和BERT(bidirectional encoder representations from transformers)模型的SG-CIM模型自动映射技术。在现有SG-CIM模型的基础上,构建出SG-CIM知识图谱和数据表知识图谱;通过研究基于BERT模型和阻塞过滤的实体映射技术,在2个知识图谱之间建立映射关系;对文本方法映射效果进行实验分析,结果表明在自制数据集上微调后BERT模型的精确度在88%以上。Aiming at the problems of current SG-CIM(state grid-common information model)such as dificult to achieve automatic update iteration and low efficient mining of new elements,an SG-CIM model automatic mapping technology based on BERT model and blocking filtering is proposed.On the basis of the existing SG-CIM,an SG-CIM knowledge map and data table knowledge graph are constructed at first.Secondly,by studying the entity alignment method based on BERT model and blocking filtering,the mapping relationship between the two knowledge graphs is established.Finally,the effectiveness of the proposed method is verified by experimental analysis of the text mapping effect.Results show that the accuracy of BERT model after finetuning on a self-made data set is more than 95%.This method lays a foundation for subsequent mining of new elements and automatic updating iteration of SG-CIM.

关 键 词:知识图谱 SG-CIM模型 BERT模型 阻塞过滤 实体对齐 实体映射 

分 类 号:TM73[电气工程—电力系统及自动化] TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象