检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yan LIANG Pu SHEN Tao CHEN Zheng-Yuan XUE
机构地区:[1]Key Laboratory of Atomic and Subatomic Structure and Quantum Control(Ministry of Education),School of Physics,South China Normal University,Guangzhou 510006,China [2]Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,Guangdong-Hong Kong Joint Laboratory of Quantum Matter,Frontier Research Institute for Physics,South China Normal University,Guangzhou 510006,China [3]Hefei National Laboratory,Hefei 230088,China
出 处:《Science China(Information Sciences)》2023年第8期19-40,共22页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.12275090);Guangdong Provincial Key Laboratory(Grant No.2020B1212060066);Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302300)。
摘 要:The geometric phase has the intrinsic property of being resistant to some types of local noises as it only depends on global properties of the evolution path.Meanwhile,the non-Abelian geometric phase is in the matrix form,and thus can naturally be used to implement high performance quantum gates,i.e.,the so-called holonomic quantum computation.This article reviews recent advances in nonadiabatic holonomic quantum computation,and focuses on various optimal control approaches that can improve the gate performance,in terms of gate fidelity and robustness.Besides,we also pay special attention to its possible physical realizations and some concrete examples of experimental realizations.Finally,with all these efforts,within state-of-the-art technology,the performance of the implemented holonomic quantum gates can outperform the conventional dynamical ones,under certain conditions.
关 键 词:quantum computation geometric phases quantum gates optimal control
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62