Detection of a Quasiperiodic Phenomenon of a Binary Star System Using Convolutional Neural Network  

在线阅读下载全文

作  者:Denis Benka Sabína Vasová Michal Kebísek Maximilián Strémy 

机构地区:[1]Institute of Applied Informatics,Automation and Mechatronics,Faculty of Materials Science and Technology,Slovak University of Technology,Trnava,91724,Slovakia

出  处:《Intelligent Automation & Soft Computing》2023年第9期2519-2535,共17页智能自动化与软计算(英文)

摘  要:Pattern recognition algorithms are commonly utilized to discover certain patterns,particularly in image-based data.Our study focuses on quasiperiodic oscillations(QPO)in celestial objects referred to as cataclysmic variables(CV).We are dealing with interestingly indistinct QPO signals,which we analyze using a power density spectrum(PDS).The confidence in detecting the latter using certain statistical approaches may come out with less significance than the truth.We work with real and simulated QPO data of a CV called MV Lyrae.Our primary statistical tool for determining confidence levels is sigma intervals.The aforementioned CV has scientifically proven QPO existence,but as indicated by our analysis,the QPO ended up falling below 1-σ,and such QPOs are not noteworthy based on the former approach.We intend to propose and ultimately train a convolutional neural network(CNN)using two types of QPO data with varying amounts of training dataset lengths.We aim to demonstrate the accuracy and viability of the classification using a CNN in comparison to sigma intervals.The resulting detection rate of our algorithm is very plausible,thus proving the effectiveness of CNNs in this scientific area.

关 键 词:Convolutional neural network quasi-periodic oscillation cataclysmic variable simulation 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象