A New Method for Image Tamper Detection Based on an Improved U-Net  

在线阅读下载全文

作  者:Jie Zhang Jianxun Zhang Bowen Li Jie Cao Yifan Guo 

机构地区:[1]Department of Computer Science and Engineering,Chongqing University of Technology,Chongqing,40005,China

出  处:《Intelligent Automation & Soft Computing》2023年第9期2883-2895,共13页智能自动化与软计算(英文)

基  金:supported in part by the National Natural Science Foundation of China(Grant Number 61971078);Chongqing University of Technology Graduate Innovation Foundation(Grant Number gzlcx20222064).

摘  要:With the improvement of image editing technology,the threshold of image tampering technology decreases,which leads to a decrease in the authenticity of image content.This has also driven research on image forgery detection techniques.In this paper,a U-Net with multiple sensory field feature extraction(MSCU-Net)for image forgery detection is proposed.The proposed MSCU-Net is an end-to-end image essential attribute segmentation network that can perform image forgery detection without any pre-processing or post-processing.MSCU-Net replaces the single-scale convolution module in the original network with an improved multiple perceptual field convolution module so that the decoder can synthesize the features of different perceptual fields use residual propagation and residual feedback to recall the input feature information and consolidate the input feature information to make the difference in image attributes between the untampered and tampered regions more obvious,and introduce the channel coordinate confusion attention mechanism(CCCA)in skip-connection to further improve the segmentation accuracy of the network.In this paper,extensive experiments are conducted on various mainstream datasets,and the results verify the effectiveness of the proposed method,which outperforms the state-of-the-art image forgery detection methods.

关 键 词:Forgery detection multiple receptive fields cyclic residuals U-Net channel coordinate confusion attention 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象