检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Huaxiang Song
机构地区:[1]School of Geography Science and Tourism,Hunan University of Arts and Science,Changde,415000,China
出 处:《Intelligent Automation & Soft Computing》2023年第8期1381-1398,共18页智能自动化与软计算(英文)
基 金:Hunan University of Arts and Science provided doctoral research funding for this study (grant number 16BSQD23);Fund of Geography Subject ([2022]351)also provided funding.
摘 要:Recently,the convolutional neural network(CNN)has been dom-inant in studies on interpreting remote sensing images(RSI).However,it appears that training optimization strategies have received less attention in relevant research.To evaluate this problem,the author proposes a novel algo-rithm named the Fast Training CNN(FST-CNN).To verify the algorithm’s effectiveness,twenty methods,including six classic models and thirty archi-tectures from previous studies,are included in a performance comparison.The overall accuracy(OA)trained by the FST-CNN algorithm on the same model architecture and dataset is treated as an evaluation baseline.Results show that there is a maximal OA gap of 8.35%between the FST-CNN and those methods in the literature,which means a 10%margin in performance.Meanwhile,all those complex roadmaps,e.g.,deep feature fusion,model combination,model ensembles,and human feature engineering,are not as effective as expected.It reveals that there was systemic suboptimal perfor-mance in the previous studies.Most of the CNN-based methods proposed in the previous studies show a consistent mistake,which has made the model’s accuracy lower than its potential value.The most important reasons seem to be the inappropriate training strategy and the shift in data distribution introduced by data augmentation(DA).As a result,most of the performance evaluation was conducted based on an inaccurate,suboptimal,and unfair result.It has made most of the previous research findings questionable to some extent.However,all these confusing results also exactly demonstrate the effectiveness of FST-CNN.This novel algorithm is model-agnostic and can be employed on any image classification model to potentially boost performance.In addition,the results also show that a standardized training strategy is indeed very meaningful for the research tasks of the RSI-SC.
关 键 词:Consistent mistake remote sensing image classification convolutional neural network deep learning
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46