Atrous Convolution-Based Residual Deep CNN for Image Dehazing with Spider Monkey-Particle Swarm Optimization  

在线阅读下载全文

作  者:CH.Mohan Sai Kumar R.S.Valarmathi 

机构地区:[1]Department of Electronics and Communication Engineering,VelTech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology,Chennai,600062,India

出  处:《Intelligent Automation & Soft Computing》2023年第8期1711-1728,共18页智能自动化与软计算(英文)

摘  要:Image dehazing is a rapidly progressing research concept to enhance image contrast and resolution in computer vision applications.Owing to severe air dispersion,fog,and haze over the environment,hazy images pose specific challenges during information retrieval.With the advances in the learning theory,most of the learning-based techniques,in particular,deep neural networks are used for single-image dehazing.The existing approaches are extremely computationally complex,and the dehazed images are suffered from color distortion caused by the over-saturation and pseudo-shadow phenomenon.However,the slow convergence rate during training and haze residual is the two demerits in the conventional image dehazing networks.This article proposes a new architecture“Atrous Convolution-based Residual Deep Convolutional Neural Network(CNN)”method with hybrid Spider Monkey-Particle Swarm Optimization for image dehazing.The large receptive field of atrous convolution extracts the global contextual information.The swarm based hybrid optimization is designed for tuning the neural network parameters during training.The experiments over the standard synthetic dataset images used in the proposed network recover clear output images free from distortion and halo effects.It is observed from the statistical analysis that Mean Square Error(MSE)decreases from 74.42 to 62.03 and Peak Signal to Noise Ratio(PSNR)increases from 22.53 to 28.82.The proposed method with hybrid optimization algorithm demonstrates a superior convergence rate and is a more robust than the current state-of-the-art techniques.

关 键 词:Image dehazing computer vision convolutional neural network color distortion over-saturation pseudo-shadow phenomenon convergence rate 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象