检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:So-Eun Jeon Sun-Jin Lee Il-Gu Lee
出 处:《Intelligent Automation & Soft Computing》2023年第8期2407-2419,共13页智能自动化与软计算(英文)
基 金:supported by a National Research Foundation of Korea (NRF)grant funded by the Ministry of Science and ICT (MSIT) (No.2020R1F1A1061107);the Korea Institute for Advancement of Technology (KIAT)grant funded by the Korean Government (MOTIE) (P0008703,The Competency Development Program for Industry Specialists);the MSIT under the ICAN (ICT Challenge and Advanced Network of HRD)program (No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning and Evaluation (IITP).
摘 要:With the development of the 5th generation of mobile communi-cation(5G)networks and artificial intelligence(AI)technologies,the use of the Internet of Things(IoT)has expanded throughout industry.Although IoT networks have improved industrial productivity and convenience,they are highly dependent on nonstandard protocol stacks and open-source-based,poorly validated software,resulting in several security vulnerabilities.How-ever,conventional AI-based software vulnerability discovery technologies cannot be applied to IoT because they require excessive memory and com-puting power.This study developed a technique for optimizing training data size to detect software vulnerabilities rapidly while maintaining learning accuracy.Experimental results using a software vulnerability classification dataset showed that different optimal data sizes did not affect the learning performance of the learning models.Moreover,the minimal data size required to train a model without performance degradation could be determined in advance.For example,the random forest model saved 85.18%of memory and improved latency by 97.82%while maintaining a learning accuracy similar to that achieved when using 100%of data,despite using only 1%.
关 键 词:Lightweight devices machine learning deep learning software vulnerability detection common weakness enumeration
分 类 号:TN91[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.201.213