检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张林 ZHANG Lin(School of Architecture and Urban Planning,Guangzhou University)
机构地区:[1]广州大学建筑与城市规划学院
出 处:《智能建筑与智慧城市》2023年第9期13-15,共3页Intelligent Building & Smart City
摘 要:通过机器算法检测道路绿化质量已成为当下的重要手段,但目前的研究范围主要集中在城乡等大尺度街区,对于社区、公园以及校园等小尺度空间的研究还较为缺乏。文章从人本视角出发,以广州大学校园道路图像为载体,结合机器学习技术,对图像中的绿色元素进行自动识别,进而计算出各路段采样点的绿化率,以此来评估校园整体绿化质量水平,以期为各大高校的景观环境设计提供新的研究视角和技术手段。The detection of road greenery quality through machine algorithms has become an important tool nowadays,but the current research scope mainly focuses on large scale neighbourhoods such as urban and rural areas,and there is a lack of research on small scale spaces such as communities,parks and campuses.From a humanistic perspective,this paper takes the road images of the Guangzhou University campus as a carrier and combines machine learning technology to automatically identify green elements in the images and then calculate the greening rate of each road sampling point,in order to assess the overall greening quality level of the campus,with the hope of providing a new research perspective and technical means for the landscape environment design of major universities.
分 类 号:TU984[建筑科学—城市规划与设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.116.170