检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王超 陈奇 谷新梅 姜湖 郭芳 邓尚云 严海贤 WANG Chao;CHEN Qi;GU Xinmei;JIANG Hu;GUO Fang;DENG Shangyun;YAN Haixian(Guangzhou Southern Investment Group Co.,Ltd.,Guangzhou 510663,China;China Energy Engineering Group Guangdong Electric Power Design Institute Co.,Ltd.,Guangzhou 510663,China;Guangdong Kenuo Surveying Engineering Co.,Ltd.,Guangzhou 510663,China;School of Mechatronic Engineering and Automation,Foshan University,Foshan 528000,China)
机构地区:[1]广州南方投资集团有限公司,广州510663 [2]中国能源建设集团广东省电力设计研究院有限公司,广州510663 [3]广东科诺勘测工程有限公司,广州510663 [4]佛山科学技术学院机电工程与自动化学院,广东佛山528000
出 处:《内蒙古电力技术》2023年第4期73-80,共8页Inner Mongolia Electric Power
摘 要:针对电力现货价格存在的高波动性、非线性特征的问题,采用变分模态分解(VMD)和WOA-ATT-BiLSTM相结合的方法实现了短期电价预测。首先使用VMD将原始电价序列分解成多个相对平稳的子序列,然后采用结合注意力机制的ATT-BiLSTM来提取电价子序列中的特征信息并进行预测,同时引入鲸鱼优化算法(WOA)优化ATT-BiLSTM的超参数来提高预测精度,最后为验证方法的有效性,使用了法国电力市场的数据进行实验比较。结果表明,基于VMD和WOA-ATT-BiLSTM模型的平均绝对百分比误差(MAPE)为2.91%,均方根误差(RMSE)为1.65欧元/MWh,平均绝对误差(MAE)为1.29欧元/MWh,相较于其他对比模型具有更准确的预测效果。In order to solve the problem of high volatility and nonlinear characteristics of spot price of electricity,a short term electricity price prediction method is implemented by combining variational mode decomposition(VMD)and WOA-ATT-BiLSTM.First,VMD is used to decompose the original electricity price sequence into several relatively stable subsequences.Then,the ATT-BiLSTM combined with attention mechanism is used to extract the characteristic information of the electrovalence subsequence and predict it.At the same time,whale optimization algorithm(WOA)is introduced to optimize the hyper-parameters of ATT-BiLSTM to improve the prediction accuracy.Finally,to verify the effectiveness of the method,the data of French electricity market are used for experimental comparison.The experimental results show that the mean absolute percentage error(MAPE),root mean square error(RMSE)and mean absolute error(MAE)of VMD and WOA-ATT BiLSTM models are 2.91%,1.65 Euro/MWh and 1.29 Euro/MWh respectively,which has more accurate prediction effect compared with other comparison models.
关 键 词:短期电价预测 变分模态分解 注意力机制 双向长短期记忆神经网络
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.26.17