检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩波 章荣丽 HAN Bo;ZHANG Rongli(College of Mathematics and Computer Application,Shangluo University,Shangluo 726000,China;Engineering Research Center of Qinling Health Welfare Big Data,Universities of Shaanxi Province,Shangluo 726000,China)
机构地区:[1]商洛学院数学与计算机应用学院,陕西商洛726000 [2]秦岭康养大数据陕西省高校工程研究中心,陕西商洛726000
出 处:《计算机测量与控制》2023年第9期83-89,共7页Computer Measurement &Control
基 金:国家社科基金西部项目(21XJY015);陕西省教育厅基础教育重大招标项目(ZDKT1606);陕西省社科联项目(2022HZ1800);陕西省教育学会项目(SJHZDKT201605—04);陕西省教育科学“十三五”规划项目(SGH17H342)。
摘 要:由于机械设备故障时间短,信号捕获难度高等原因的存在,会导致小样本故障集出现,但小样本往往是机械故障诊断的关键;针对小样本条件下传统滚动轴承故障诊断诊断算法存在检测率偏低等问题,提出一种基于SGMM模型的滚动轴承故障诊断算法;先确定与故障建模策略相关的提取任务,预估潜在的机械故障状态变化;对故障信号进行变分模态分解,得到最小熵解卷积结果,并满足端点效应的处理需求,实现对机械故障位置的精确定位与诊断;实验结论表明,SGMM模型更注重对故障脉冲成分的连续检测,在以峭度作为衡量标准的条件下,该方法增强故障冲击力的作用更强,能更早诊断出轴承类机械元件的早期故障状态,平均故障检测率能够达到99.4%。Due to the short fault time of mechanical equipment and high difficulty of signal acquisition,it leads to small sample fault sets to occur,but small samples are often the key to mechanical fault diagnosis.A rolling bearing fault diagnosis algorithm based on subspace Gaussian mixture model(SGMM)model is proposed to address the problem of low detection rate in traditional rolling bearing fault diagnosis algorithms under small sample conditions.Firstly,identify the extraction tasks related to the fault modeling strategy and estimate potential changes in mechanical fault status;The variational modal on the fault signal is decomposed to obtain the minimum entropy deconvolution result,meet the processing requirements of endpoint effects,and realize the precise positioning and diagnosis of mechanical fault locations.The experimental conclusion shows that the SGMM model places more emphasis on continuous detection of fault pulse components.The kurtosis is taken as a measurement standard,this method has a stronger effect on enhancing fault impact and can diagnose the early fault status of bearing mechanical components,with an average fault detection rate of 99.4%.
关 键 词:小样本条件 SGMM模型 变分模态 熵解卷积 端点效应
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49