检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄桂林[1] 安影 HUANG Guilin;AN Ying(School of Civil Engineering and Transportation,Northeast Forestry University,Harbin 150040,China)
机构地区:[1]东北林业大学土木与交通学院,黑龙江哈尔滨150040
出 处:《工程管理学报》2023年第4期135-139,共5页Journal of Engineering Management
摘 要:基于“双碳”目标下房地产企业绿色经济效益可持续增长的发展要求,选取2004—2019年中国30个省市(除西藏外)省域面板数据,运用SBM-GML模型对房地产绿色全要素生产率进行测度并分析变化趋势,构建空间计量模型将房地产绿色全要素生产率、产业结构优化和住房价格纳入同一分析框架,讨论两者对住房价格的空间溢出效应。结果表明:研究期内中国房地产绿色全要素生产率水平偏低,东部地区的年均增长率高于全国和中西部地区,波动幅度较小且更为平稳;对GML指数进行分解后发现,技术效率(EC)对绿色全要素生产率增长的贡献作用较大;房地产绿色全要素生产率和产业结构优化水平对住房价格具有显著空间溢出效应,其增长将会促进本地区住房价格上涨,导致周边地区住房价格下降。The current study is based on the development requirement of sustainable growth of GTFP economic efficiency of real estate enterprises under the goal of"Bi Carbon".This paper selects the panel data of 30 Chinese provinces(except Tibet)from 2004 to 2019 to evaluate the GTFP of real estate and analyze the changing trend by using SBM-GML model,and then constructs a spatial econometric model to incorporate GTFP of real estate,industrial structure optimization and housing prices into the same analytical framework.After that,we discuss the spatial spillover effects of both on housing prices.The results show that:the level of GTFP of real estate in China is low during the study period,and the average annual growth rate in the eastern region is higher than that in the national and central-western regions,with smaller and smoother fluctuations.After decomposing the GML index,this research found that technical efficiency contributes more to the growth of GTFP.The level of real estate GTFP and industrial structure optimization has a significant spatial spillover effect on housing prices,and its growth will promote the increase of housing prices in the region and lead to the decrease of housing prices in the surrounding areas.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222