检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宁 成利敏[1] 甄景涛[1] 段晓霞[1] Wang Ning;Cheng Limin;Zhen Jingtao;Duan Xiaoxia(Langfang Normal University,Langfang 065000,China)
机构地区:[1]廊坊师范学院,河北廊坊065000
出 处:《廊坊师范学院学报(自然科学版)》2023年第3期10-14,共5页Journal of Langfang Normal University(Natural Science Edition)
基 金:2020年廊坊市科学技术研究与发展计划(第一批)自筹经费项目(2020011009)。
摘 要:交通流量预测是智能交通系统中必不可少的组成部分。利用门控循环单元(GRU)神经网络搭建交通流量预测模型,并与循环神经网络(RNN)、长短期记忆(LSTM)神经网络进行对比,以验证GRU的优越性。在此基础上,为更好地满足实际应用,实现了基于GRU神经网络的滚动预测,设计了一个城市交通流量预测网站来展示预测结果,方便用户查询,有一定的使用价值。Traffic flow prediction is an indispensable part of the intelligent transportation system.This paper uses the Gate Recurrent Unit(GRU)neural network to build a traffic flow prediction model,and compares it with Recurrent Neural Net-work(RNN)and Long Short-Term Memory(LSTM)neural network to verify the advantages of GRU.On this basis,in order to better satisfy practical applications,a rolling prediction based on GRU neural network was implemented,and an urban traffic flow prediction website was designed to display the predicted results,which is convenient for users to query and has certain practical value.
关 键 词:智能交通系统 GRU神经网络 RNN神经网络 LSTM神经网络 交通流量预测网站
分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15