机构地区:[1]新疆医科大学第一附属医院脊柱外科,乌鲁木齐830054 [2]喀什地区第一人民医院影像中心,喀什844000 [3]上海交通大学新华医院脊柱外科,上海200092
出 处:《中华骨科杂志》2023年第18期1223-1232,共10页Chinese Journal of Orthopaedics
摘 要:目的探讨临床特征及MRI T2加权脂肪抑制像(T2WI-FS)影像组学特征在布鲁杆菌性脊柱炎与化脓性脊柱炎鉴别诊断中的应用价值。方法收集2019年1月至2021年12月新疆医科大学附属第一医院经病理或病原学培养确诊的26例布鲁杆菌性脊柱炎和23例化脓性脊柱炎患者的临床资料。对人口学特征、临床特征及实验室检查等行单因素分析,筛选出有统计学意义的潜在临床危险因素。通过手动勾画术前矢状面T2WI-FS的感兴趣区,利用Pyradiomics包提取多样化的影像组学特征,包括形状、纹理和灰度值等;对影像组学特征进行归一化、冗余性分析排除高度相关的特征,再通过统计方法筛选与研究目标相关的特征;采用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归,从高维特征中筛选出最具鉴别意义的特征以优化模型的预测性能;利用选出的影像组学特征计算影像组学评分。将筛选的临床危险因素、影像组学特征及影像组学评分纳入logistic回归,构建临床特征模型、影像组学评分模型及临床特征-影像组学评分模型。采用混淆矩阵及受试者操作特征曲线(receiver operating characteristic,ROC)评估模型的鉴别能力。结果49例患者纳入研究,男36例、女13例,年龄(53.79±13.79)岁(范围23~83岁)。化脓性脊柱炎患者的C反应蛋白(C-reaction protein,CRP)及红细胞沉降率(erythrocyte sedimentation rate,ESR)水平高于布鲁杆菌性脊柱炎患者,CRP及ESR是潜在临床危险因素(P<0.05)。共获得影像组学特征1500个,筛选出7个影像组学特征(logarithm glrlm SRLGLE、exponential glcm Imc1、exponential glcm MCC、exponential gldm SDLGLE、square glcm ClusterShade、squareroot glszm SALGLE和wavelet.HHH glrlm Run Variance)。7个影像组学特征中square glcm ClusterShade的效能最好,曲线下面积(area under the curve,AUC)值为0.780、灵敏度68.8%、特异度94.4%、准确度82.4%、�Objective To elucidate the diagnostic utility of clinical features and radiomics characteristics derived from magnetic resonance imaging T2-weighted fat-suppressed images(T2WI-FS)in differentiating brucellosis spondylitis from pyogenic spondylitis.Methods Clinical records of 26 patients diagnosed with Brucellosis Spondylitis and 23 with Pyogenic Spondylitis were retrospectively reviewed from Xinjiang Medical University First Affiliated Hospital between January 2019 and December 2021.Confirmatory diagnosis was ascertained through histopathological examination and/or microbial culture.Demographic characteristics,symptoms,clinical manifestations,and hematological tests were collected,followed by a univariate analysis to discern clinically significant risk factors.For the radiomics evaluation,preoperative sagittal T2WI-FS images were utilized.Regions of interest(ROIs)were manually outlined by two adept radiologists.Employing the Py Radiomics toolkit,an extensive array of radiomics features encompassing shape,texture,and graylevel attributes were extracted,yielding a total of 1,500 radiomics parameters.Fea ture normalzation and redundancy elimination were implemented to optimize the predictive efficacy of the model.Discriminatory radiomics features were identified through statistical methods like t-tests or rank-sum tests,followed by refinement via least abso lute shrinkage and selection operator(LASSO)regression.An integrative logistic regression model incorporated selected clinical risk factors,radiomics attributes,and a composite radiomics score(Rad-Score).The diagnostic performance of three models clini cal risk factors alone,Rad-Score alone,and a synergistic combination were appraised using a confusion matrix and receiver operat ing characteristic(ROC)analysis.Results The cohort comprised 49 patients,including 36 males and 13 females,with a mean age of 53.79±13.79 years.C-reactive protein(CRP)and erythrocyte sedimentation rate(ESR)emerged as significant clinical risk factors(P<0.005).A total of seven discriminat
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...