An adaptive and robust secret key extraction scheme from high noise wireless channel in IIoT  

在线阅读下载全文

作  者:Lupeng Zhang Pingchuan Wang Yuming Zhang Zongzheng Chi Ning Tong Lei Wang Fengqi Li 

机构地区:[1]School of Software,Dalian Jiaotong University,Dalian,116028,China [2]School of Software,Dalian University of Technology,Dalian,116024,China [3]Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province,China

出  处:《Digital Communications and Networks》2023年第4期809-816,共8页数字通信与网络(英文版)

基  金:supported in part by the National Natural Science Foundation of China(No.61902051);the Key R&D Program of Liaoning Province under Grant 2020JH2/10100038.

摘  要:The Sixth-Generation(6G)enhances the Industrial Internet of Things(IIoT)communication efficiency and further raises security requirements.It is crucial to construct a post-quantum security communication channel between any pair of industrial equipment.Recent work shows that two legitimate devices can directly extract symmetrical secret keys in information-theoretic secure by measuring their common wireless channels.However,existing schemes may cause a high bit mismatch rate in IIoT with high noise.In addition,the physical layer key extraction scheme widely uses passive attack assumptions,which also contradicts the high-security requirements of IIoT.By analyzing and modeling IIoT systems and channels,we propose an Adaptive and Robust Secret Key Extraction scheme(ARSKE)from high noise wireless channels in 6G-enabled IIoT.To eliminate the non-reciprocity of the wireless channel,we design a smoothing method as the preprocessing module.Then,we propose a Robust Secure Reconciliation technique that can effectively resist active attacks by jointly designing the information reconciliation and privacy amplification phases.Extensive real-world experiments are conducted to test the effectiveness and robustness of our scheme.

关 键 词:SECURITY Key extraction Resource-constrained devices PRIVACY 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象