检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江其建 Qijian Jiang
出 处:《中国监狱学刊》2023年第3期41-51,共11页China Prison Journal
摘 要:现有罪犯危险度评估体系主要是传统经验主义模式,体系不能自我升级、不能全时段监测、不能全员评估、不能全要素纳入。但罪犯危险度工作要求全时段、全员、全要素纳入危险评估,且能分析因子之间的相互影响,提前做出预判,这就需要应用大数据分析。决策树和随机森林模型在聚类算法中较为成熟,其分析结果相对于传统评估体系具有更高的准确性、时效性、全面性,并能不断自我升级优化,预测结果可以为罪犯危险评估工作提供意见参考。
关 键 词:大数据 罪犯危险度评估 决策树-随机森林模型 机器学习
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7