Joint Optimization Communication and Computing Resource for LEO Satellites with Edge Computing  被引量:1

在线阅读下载全文

作  者:JIA Min WU Jian ZHANG Liang GUO Qing 

机构地区:[1]School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150000,China

出  处:《Chinese Journal of Electronics》2023年第5期1011-1021,共11页电子学报(英文版)

基  金:supported by the National Natural Science Foundation of China(62231012);the Natural Science Foundation for Outstanding Young Scholars of Heilongjiang Province(YQ2020F001)。

摘  要:Low earth orbit(LEO)satellites with wide coverage can carry mobile edge computing(MEC)servers with computing power to form the LEO satellite edge computing system,providing computing services for ground users that cannot access the core network.This paper studies the joint optimization problem of communication and computing resource in the LEO satellite edge computing system to minimize the utility function value of the system.Due to the fact that,general optimization tools cannot effectively solve this problem,this paper proposes a deep learning-based bandwidth allocation algorithm.The bandwidth allocation schemes are generated through multiple parallel deep neural networks(DNNs).The utility function values of the system are calculated according to the derived optimal CPU cycle frequency and optimal user transmission power.The bandwidth allocation scheme corresponding to the optimal system utility function value is stored in the memory to further train and improve all DNNs.The simulation results show that the proposed algorithm can achieve good convergence effect and the algorithm proposed in this paper outperforms the other four comparison algorithms with low average time cost.

关 键 词:Low earth orbit satellite Edge computing Deep learning Joint optimization 

分 类 号:TN927.2[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象