Track-Oriented Marginal Poisson Multi-Bernoulli Mixture Filter for Extended Target Tracking  被引量:2

在线阅读下载全文

作  者:DU Haocui XIE Weixin LIU Zongxiang LI Liangqun 

机构地区:[1]ATR Key Laboratory,Shenzhen University,Shenzhen 518060,China [2]Guangdong Key Laboratory of Intelligent Information Processing,Shenzhen University,Shenzhen 518060,China

出  处:《Chinese Journal of Electronics》2023年第5期1106-1119,共14页电子学报(英文版)

基  金:supported by the National Natural Science Foundation of China(61271107,61703280,62171287);the Shenzhen Basic Research Project(JCYJ20170818102503604).

摘  要:In this paper,we derive and propose a track-oriented marginal Poisson multi-Bernoulli mixture(TO-MPMBM)filter to address the problem that the standard random finite set filters cannot build continuous trajectories for multiple extended targets.First,the Poisson point process model and the multi-Bernoulli mixture(MBM)model are used to establish the set of birth trajectories and the set of existing trajectories,respectively.Second,the proposed filter recursively propagates the marginal association distributions and the Poisson multi-Bernoulli mixture(PMBM)density over the set of alive trajectories.Finally,after pruning and merging process,the trajectories with existence probability greater than the given threshold are extracted as the estimated target trajectories.A comparison of the proposed filter with the existing trajectory filters in two classical scenarios confirms the validity and reliability of the TO-MPMBM filter.

关 键 词:Extended target tracking Random finite set Poisson multi-Bernoulli mixture Poisson point process Marginal distribution Target trajectory 

分 类 号:TN713[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象