检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘海涛 陈春梅[1] 庞忠祥 梁志强 李晴 LIU Haitao;CHEN Chunmei;PANG Zhongxiang;LIANG Zhiqiang;LI Qing(College of Information Engineering,Southwest University of Science and Technology,Mianyang,Sichuan 621002,China)
机构地区:[1]西南科技大学信息工程学院,四川绵阳621002
出 处:《计算机工程与应用》2023年第18期84-97,共14页Computer Engineering and Applications
基 金:西南科技大学博士基金(20zx7123)。
摘 要:由于朴素贝叶斯算法忽略了数据多维属性的相关性,从而导致分类算法的极大应用局限。对此提出多类属性加权与正交变换融合的朴素贝叶斯改进算法。利用贡献度与相关互信息去量化离散属性以及离散属性值之间的相关程度,以获得其权重;利用正交变换方法消除连续属性之间的线性关系;将加权后的离散属性和正交变换后的连续属性的条件概率进行区分计算,从而得到较高的分类精度并提高算法的泛化能力。通过在公开数据集以及校园一卡通数据集上的k折交叉验证,实验结果表明,与最新的5种改进朴素贝叶斯算法相比,该算法的准确率高了7.19~9.94个百分点,加权平均F1值高了6.4~11.64个百分点。Because the Naive Bayes algorithm ignores the correlation of multi-dimensional attributes of data,it leads to great application limitations of classification algorithms.In this paper,an improved Naive Bayes algorithm combining multiple attribute weighting and orthogonal transformation is proposed.Firstly,the contribution degree and related mutual information are used to quantify the correlation between discrete attributes and discrete attribute values to obtain their weights.Then,the orthogonal transformation method is used to eliminate the linear relationship between continuous attri-butes.Then,the conditional probabilities of the weighted discrete attributes and the continuous attributes after orthogonal transformation are distinguished and calculated to obtain higher classification accuracy and improve the generalization ability of the algorithm.Through the k-fold cross-validation on the public data set and the campus card data set,the exper-imental results show that compared with the latest five improved Naive Bayes algorithms,the accuracy of the proposed algorithm is 7.19~9.94 percentage points higher,and the weighted average F1 value is 6.4~11.64 percentage points higher.
关 键 词:多维混合属性 离散属性加权 离散属性值加权 正交变换 k折交叉验证
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.241.210