检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宗留留 杨蕴智 老东辉 李晓宇 吕迁洲 ZONG Liuliu;YANG Yunzhi;LAO Donghui;LI Xiaoyu;LYU Qianzhou(Department of Pharmacy,Zhongshan Hospital Affiliated to Fudan University,Shanghai 200032,China)
机构地区:[1]复旦大学附属中山医院药剂科,上海200032
出 处:《药学实践与服务》2023年第9期561-565,共5页Journal of Pharmaceutical Practice and Service
摘 要:目的探讨静脉用药调配中心(pharmacy intravenous admixture services,PIVAS)长期医嘱工作量的波动特征,构建以日为单位频次的工作量波动预测模型,为PIVAS工作模式的调整提供参考。方法选取复旦大学附属中山医院东院区PIVAS2020年7月至2021年6月长期医嘱日工作量数据,采用时间序列分析法分析工作量波动特征并构建预测模型,通过拟合参数及预测结果验证模型精度。结果PIVAS长期医嘱日工作量数据波动具有周期性、短期缓慢上升和不规则变动等特征;采用温特斯乘法模型拟合序列,Ljung-Box统计量的显著性值(P值)为0.060(P>0.05),R2=0.777,拟合值与实际值的平均绝对误差为4.45%,表明模型拟合精度高;预测结果与实测结果平均相对偏差为3.81%,说明模型预测有效。结论时间序列分析法可用于PIVAS长期医嘱工作量的分析预测,但因医嘱工作量存在周期性、不规则变动等波动规律,故需根据工作量波动特征及预测结果调整工作模式,以保障PIVAS高效运营。Objective To explore the fluctuation characteristics of long-term doctor's order workload in pharmacy intravenous admixture services(PIVAS)and build a daily workload fluctuation prediction model and provide reference for the adjustment of PIVAS work mode.Methods Daily workload data of long-term doctor’s orders from PIVAS in the East Campus of Zhongshan Hospital affiliated to Fudan University from July 2020 to June 2021 were selected,and the time series analysis method was used to analyze the workload fluctuation characteristics and a prediction model was established.The accuracy of the model was verified by fitting parameters and prediction results.Results The fluctuation of PIVAS long-term doctor's daily workload data had the characteristics of periodicity,short-term slow rise and irregular variation.The Winters multiplier model was used to fit the series with R2=0.777,the significance value of Ljung-Box statistic value(P value)was 0.060,and the mean absolute error percentage between the fitted and actual values was 4.45%,indicating that the model fitting accuracy was high.The average relative deviation between the predicted and actual results was 3.81%,indicating that the model prediction was effective.Conclusion The model constructed in this study could be used for the analysis and prediction of long-term doctor's orders workload of PIVAS.However,because the workload of doctor's orders has fluctuations such as periodicity and irregular changes,it is necessary to adjust the working model according to the fluctuation characteristics of the workload and the prediction results to ensure the efficient operation of PIVAS.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7