检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:殷素娟 韩鹦赢[2] 常文秀[2] YIN Sujuan;HAN Yingying;CHANG Wenxiu(Graduate School,Tianjin University of Traditional Chinese Medicine,Tianjin 301617,China;Department of Nephrology,Tianjin First Central Hospital,Tianjin 300192,China)
机构地区:[1]天津中医药大学研究生院,天津301617 [2]天津市第一中心医院肾科,天津300192
出 处:《现代医学》2023年第8期1078-1084,共7页Modern Medical Journal
基 金:天津市中医药管理局课题(2021143)。
摘 要:目的:研究维持性血液透析(MHD)患者并发不宁腿综合征(RLS)的危险因素,并在此基础上构建风险预测模型。方法:选取202例行MHD的患者为建模组,使用多因素Logistic回归分析来探讨MHD患者并发RLS的危险因素,并基于危险因素构建风险预测模型;另收集103例行MHD的患者作为验证组,对模型进行内、外部验证。两组均根据是否发生不宁腿综合征分为阳性组和阴性组。结果:多因素Logistic回归分析显示,Hb<110 g·L^(-1)、PTH≥350 pg·ml^(-1)、原发糖尿病肾病是MHD患者并发RLS的危险因素。内部验证显示Calibration校准曲线拟合良好(H-L检验显示χ^(2)=8.620,P=0.375),受试者工作特征(ROC)曲线下面积(AUC)及一致性指数(C-index)均为0.763(95%CI 0.665~0.861),灵敏度为66.7%,特异度为76.9%。验证组显示Calibration校准曲线具有良好的一致性(H-L检验显示χ^(2)=4.028,P=0.673),AUC与C-index均为0.852(95%CI 0.769~0.935)。两组决策曲线分析(DCA)显示临床效益良好。结论:糖尿病肾病、贫血、高PTH水平是MHD并发RLS的独立危险因素,构建RLS在MHD患者中的风险预测模型具有较好的校准性、区分性和临床效益,可用于辅助临床决策。Objective:To investigate the risk factors of restless legs syndrome(RLS)in maintenance hemodialysis(MHD)patients and to construct a risk nomogram prediction model based on this.Methods:202 cases of MHD patients were selected as the modeling group,and multifactorial Logistic regression analysis was used to explore the risk factors for the complication of RLS in patients with MHD,and a risk prediction model was constructed based on the risk factors,and 103 cases of MHD patients were collected as the validation group,and the model was internally and externally validated.The 2 groups were divided into a positive group and a negative group according to the occurrence or non-occurrence of RLS.Results:The multifactorial Logistic regression analysis showed that Hb<110 g·L^(-1),PTH≥350 pg·ml^(-1),and primary diabetic nephropathy were independent risk factors for RLS in MHD patients.The Bootstrap resampling procedure was validated internally(the H-L test showed χ^(2)=8.620,P=0.375)and the Calibration curve fitted well.The area under the ROC curve and C-index were 0.763(95%CI 0.665-0.861),the sensitivity was 66.7% and the specificity was 76.9%.The Calibration curves showed a good consistency with the external validation results of the validation group(H-L test showed χ^(2)=4.028,P=0.673)and the AUC and C-index were 0.852(95%CI 0.769-0.935).Decision curve analysis also showed good net benefits in both groups.Conclusion:Diabetic nephropathy,anemia,and high PTH levels are independent risk factors for RLS in MHD patients,and the risk nomogram prediction model for RLS in MHD patients has good calibration,discrimination and clinical benefit which can be used to assist clinical decision making.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38