检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨茜[1] Yang Xi(College of Physical Education,Zhengzhou University,Zhengzhou 450000,Henan,China)
出 处:《计算机应用与软件》2023年第9期145-150,183,共7页Computer Applications and Software
基 金:郑州大学体育学院2023年级院级青年骨干教师培养计划(QNGGJS202302)。
摘 要:针对当前大多数分类算法忽略标签之间相关性的问题,提出一种基于双向长短时记忆(Bi-LSTM)网络和图注意力网络(Graph Attention Network,GAT)的多标签文本分类算法。使用词嵌入工具对文本序列和标签中的词向量进行预处理后的文本序列和标签分别输入到Bi-LSTM网络和GAT网络中;提取文本序列的上下文信息和全局特征,以及GAT网络捕获标签之间的相关性;将特征向量和标签相关性进行组合对标签文本分类任务进行预测。实验结果表明,所提算法通过有效关注标签之间的相关性使得文本分类任务的精度得以明显提高,在多个评估指标的测试结果优于其他对比方法。Aimed at the phenomenon that most classification algorithms ignore the relationship among labels,a multi label text classification algorithm based on bi-directional long short-term memory(Bi-LSTM)network and graph attention network(GAT)is proposed.The word embedding tool was used to preprocess the word vectors in the text sequence and labels.The preprocessed text sequence and labels were input into the Bi-LSTM network and the GAT respectively.The context information and global features of the text sequence were extracted,and the GAT network captured the relationship among labels.The feature vector and the label relationship were combined to predict the task of tagging text.Experimental results show that the proposed algorithm can improve the accuracy of text classification task by effectively focusing on the relationship among labels,and its test results under multiple evaluation indicators are better than the results of other comparison methods.
关 键 词:多标签文本分类 双向长短时记忆网络 图注意力网络 深度学习
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.63.154