检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张坤[1] 肖慧[1,2] 徐哈宁[1] 胡佳超 范凌峰 ZHANG Kun;XIAO Hui;XU Ha-ning;HU Jia-chao;FAN Ling-feng(Engineering Research Center of Nuclear Technology Application Ministry of Education,East China University of Technology,Nanchang 330013,China;Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology,East China University of Technology,Nanchang 330013,China)
机构地区:[1]东华理工大学核技术应用教育部工程研究中心,南昌330013 [2]江西省放射性地学大数据技术工程实验室,东华理工大学,南昌330013
出 处:《科学技术与工程》2023年第26期11129-11135,共7页Science Technology and Engineering
基 金:核技术应用教育部工程研究中心基金(HJSJYB2019-7,HJSJYB2018-3);江西省放射性地学大数据技术工程实验室基金(JELRGBDT202206);江西省防震减灾与工程地质灾害探测工程研究中心基金(SDGD202005);江西省自然科学基金(20212BAB203004)。
摘 要:在滑坡地表位移监测过程中,由于设备工作异常或恶劣气候的干扰,原始数据会随机出现长时间序列的缺失,这类数据对滑坡的预警和预测有很大的影响。针对上述问题,提出了一种基于主成分分析(principal component analysis,PCA)和长短期记忆网络(long-short term memory,LSTM)的数据插补方法。首先利用PCA实现滑坡监测数据的降维和特征提取,消除数据间的相关性,然后建立基于LSTM的地表位移监测数据插补模型,对缺失数据进行插补。实验结果表明:该模型与BP(back propagation)神经网络等其他几种机器学习插补模型相比,平均绝对误差、均方根误差和平均绝对百分比误差分别为0.523、1.233和0.009,均优于其他几种模型;该模型能够较好地解决地表位移长时间序列数据缺失的问题。In the process of landslide surface displacement monitoring,the original data may randomly have long time series missing due to the interference of abnormal equipment work or bad weather,and such data has a great impact on the landslide warning and prediction.To solve the problem,a data interpolation method based on principal component analysis(PCA)and long short-term memory(LSTM)was proposed.Firstly,PCA was used to realize the downscaling and feature extraction of landslide monitoring data to eliminate the correlation between data,and then an LSTM-based interpolation model of surface displacement monitoring data was established to interpolate the missing data.Finally,the interpolation of surface displacement data was realized.The experimental results showed that this model outperforms other machine learning interpolation models such as Back Propagation neural network with mean absolute error,root mean square error and mean absolute percentage error of 0.523,1.233 and 0.009,respectively.This model could better solve the problem of missing long time series data of surface displacement.
关 键 词:滑坡地表位移 缺失数据插补 主成分分析 长短期记忆网络
分 类 号:P642.22[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.80.161