检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王佳 马睿 赵威 郭宏杰 马德新[1] Wang Jia;Ma Rui;Zhao Wei;Guo Hongjie;Ma Dexin(Qingdao Agricultural University,Qingdao 266109)
机构地区:[1]青岛农业大学,青岛266109
出 处:《中国粮油学报》2023年第8期229-234,共6页Journal of the Chinese Cereals and Oils Association
基 金:山东省重点研发计划项目(2019GNC106001);青岛市民生科技计划项目(18-6-1-112-nsh);淄博市重点研发计划项目(2019gy010101);山东省高等学校青创人才引育计划项目(202202027)。
摘 要:针对传统的种子鉴别方法主要依靠人工鉴别,主观性强,费时费力,效率低下。以鉴别玉米品种登海605为例,利用深度学习和卷积神经网络相结合的方法,构建胚面、胚乳、双面混合3类数据集。对VGG16模型用不同FT(Fine-tuning)策略进行微调,结果表明,在FT75%训练策略下模型的测试准确率最高,在3类数据集上均为100%,同时在FT75%-VGG16探讨了不同数量全连接层神经元数量对网络性能的影响,最终选定2048为最终神经元数量。Traditional seed identification is mainly conducted by manual labor,which is subjective,time-consuming and inefficient.In this paper,taking the identification of maize variety Denghai 605 as an example,three kinds of data sets including embryo surface,endosperm and double-sided mixture were constructed by using the method of combining the deep learning with convolution neural network.The VGG16 model was fine-tuned with different FT(fine-tuning)strategies.The results showed that the model had the highest test accuracy under the FT75%training strategy,which was 100%on all three types of data sets.And the influence of different numbers of neurons in the full connection layer on the network performance was discussed in FT75%-VGG16,and 2048 was finally selected as the final number of neurons.
分 类 号:S126[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248