Aerial multi-spectral AI-based detection system for unexploded ordnance  被引量:3

在线阅读下载全文

作  者:Seungwan Cho Jungmok Ma Oleg A.Yakimenko 

机构地区:[1]Republic of Korea Army,Republic of Korea/Defense Acquisition Program Administration,47,Gwanmun-ro,Gwacheon-si,Gyeonggi-do,13809,Republic of Korea [2]Department of Defense Science,Korea National Defense University,1040,Republic of Korea [3]Hwangsanbul-ro,Yangchon-myeon,Nonsan-si,Chungcheongnam-do,33021,Republic of Korea [4]Department of Systems Engineering,Naval Postgraduate School,USA [5]1 University Circle,Monterey,CA,93943,USA

出  处:《Defence Technology(防务技术)》2023年第9期24-37,共14页Defence Technology

基  金:the Office of Naval Research for supporting this effort through the Consortium for Robotics and Unmanned Systems Education and Research。

摘  要:Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.

关 键 词:Unexploded ordnance(UXO) Multispectral imaging Small unmanned aerial systems(sUAS) Object detection Deep learning convolutional neural network(DLCNN) 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TJ410.89[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象