检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊学平 周衡[2] 刘月飞 FAN Xue-ping;ZHOU Heng;LIU Yue-fei(Key Laboratory of Mechanics on Disaster and Environment in Western China of Ministry of Education,Lanzhou University,Lanzhou 730013;School of Civil Engineering and Mechanics,Lanzhou University,Lanzhou 730013,China)
机构地区:[1]兰州大学西部灾害与环境力学教育部重点实验室,兰州730013 [2]兰州大学土木工程与力学学院,兰州730013
出 处:《吉林大学学报(工学版)》2023年第8期2332-2338,共7页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(51608243);中央高校基金面上项目(lzujbky-2022-43);甘肃省自然科学基金面上项目(20JR10RA625,20JR10RA623).
摘 要:基于在役桥梁健康监测信息对结构可靠性进行预测分析。首先,采用时间序列分析方法、移动平均法以及五点三次平滑法将采集的健康监测信息(极值应力信号)进行降噪处理;其次考虑到时间序列用单一的动态线性模型预测不够完善,需要用多个动态线性模型的组合进行预测,引入多过程模型,建立多过程贝叶斯动态线性模型(BDLM),进行监测极值应力的预测和分析;最后,结合多过程贝叶斯动态线性模型(BDLM)和一次二阶矩(FOSM)可靠度方法进行桥梁构件的时变可靠性分析。研究成果为结构可靠性预测提供了理论基础。Based on the health monitoring information of the in-service bridge,it is very important to reasonably analyse the structural reliability for the safety and serviceability assessment.In this paper,the time series analysis method,the moving average method and the cubical smoothing algorithm with fivepoint approximation are used to reduce the noise of monitoring information(extreme stress signal).Considering that some time series is not enough to predict with a single dynamic linear model,these time series need to be predicted by a combination of multiple dynamic linear models.This study introduces multi-process model and establishes a multi-process Bayesian dynamic linear model to predict and analyse the extreme stresses;Further,the time-dependent reliability of bridge members is predicted by combining multi-process Bayesian dynamic linear model(BDLM)and first-order second moment(FOSM)reliability method.The research results of this paper will provide the theoretical basis for structural reliability prediction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49