检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘石坚 林锦嘉 陈梓灿 邹峥 LIU Shijian;LIN Jinjia;CHEN Zican;ZOU Zheng(Fujian Provincial Key Laboratory of Big Data Mining and Applications,Fuzhou 350118,China;College of Computer and Cyber Security,Fujian Normal University,Fuzhou 350117,China)
机构地区:[1]福建省大数据挖掘与应用技术重点实验室,福建福州350118 [2]福建师范大学计算机与网络空间安全学院,福建福州350117
出 处:《福建工程学院学报》2023年第4期378-384,共7页Journal of Fujian University of Technology
基 金:福建省教育厅科研项目(JAT210283);福建工程学院校级科研项目(GY-Z21047,GY-Z20068)。
摘 要:在试管-支架自动化系统的输入图像中,Data Matrix(DM)码呈现为多个小目标,图像存在成像模糊、边缘干扰严重等问题,使得传统方法难以达到良好的识别效果。为此,提出一种基于深度学习的Data Matrix码识别方法DeepDMCode,以Mask R-CNN模型为基础,通过内容差异化数据合成和同步自动化标注,实现训练数据的增强,提升模型的学习能力。在模型分割结果的基础上,提出一种旋转校正方法,确保可用标准解码库实现DM码的解码。以分辨率为1600×1200、支架容量为96的数据实验表明,由于该方法在前期码定位阶段最大程度地还原码边界信息,准确度可达0.92(mIoU),完成单张图像中所有DM识别的平均速度为5.2 s,优于YOLO、SegNet、CenterNet等主流工业基准算法。The Data Matrix(DM)codes from the tube-rack automatic system can be seen as multiple small targets in the input image,which has problems such as blurred imaging and serious edge interference and makes it difficult for traditional methods to achieve good recognition results.Therefore,a Data Matrix code recognition method based on deep learning named DeepDMCode was proposed.Based on the Mask R-CNN model,the training data was enhanced and the learning ability of the model was improved through content-differentiated data synthesis and synchronous automatic annotation.Based on the segmentation results of the model,a rotation correction method was proposed to ensure that the DM code can be decoded using a standard decoding library.Experiments were carried out with images of resolution 1600×1200,which were captured from racks of 96 capacity.Results show that the method can restore the code boundary information to the greatest extent in the early code positioning stage,and the accuracy can reach 0.92(mIoU).The average speed of completing all DM recognition in a single image is 5.2 s,which is better than mainstream industrial benchmark algorithms such as YOLO,SegNet,and CenterNet.
关 键 词:试管-支架系统 Mask R-CNN Data Matrix码 人工数据合成 实验室自动化
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198