检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李金亮 林兵 陈星[1,2] LI Jinliang;LIN Bing;CHEN Xing(College of Computer and Data Science,Fuzhou University,Fuzhou 350108,China;Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing,Fuzhou 350108,China;College of Physics and Energy,Fujian Normal University,Fuzhou 350117,China)
机构地区:[1]福州大学计算机与大数据学院,福州350108 [2]福建省网络计算与智能信息处理重点实验室,福州350108 [3]福建师范大学物理与能源学院,福州350117
出 处:《计算机科学》2023年第10期291-298,共8页Computer Science
基 金:国家自然科学基金(62072108);福建省自然科学基金杰青项目(2020J06014);福建省高校产学合作项目(2022H6024)。
摘 要:随着越来越多的计算密集型依赖应用被卸载到云环境中执行,工作流调度问题受到了广泛的关注。针对云环境多目标优化的工作流调度问题,考虑到任务执行过程中服务器可能会发生性能波动和宕机等问题,基于模糊理论,使用三角模糊数表示任务执行时间和数据传输时间,提出了一种基于遗传算法的自适应粒子群优化算法(Adaptive Particle Swarm Optimization based GA,APSOGA),目的是在工作流的可靠性约束下,综合优化工作流的完成时间和执行代价。该算法为了避免传统粒子群优化算法存在的过早收敛问题,引入了遗传算法的随机两点交叉操作和单点变异操作,有效地提升了算法的搜索性能。实验结果表明,与其他策略相比,基于APSOGA的调度策略能够有效地降低云环境中面向可靠性约束的科学工作流的模糊总代价。As more and more computationally intensive dependent applications are offloaded to the cloud environment for execution,the problem of workflow scheduling has received extensive attention.Aiming at the workflow scheduling problem of multi-objective optimization in cloud environment,and considering that the server may experience performance fluctuations and downtime during task execution,based on fuzzy theory,a triangular fuzzy number is used to represent task execution time and data transmission time.A genetic algorithm-based adaptive particle swarm optimization based GA(APSOGA)is proposed.The purpose is to comprehensively optimize the completion time and execution cost of the workflow under the reliability constraints of the workflow.In order to avoid the premature convergence problem of the traditional particle swarm optimization algorithm,the proposed algorithm introduces the random two-point crossover operation and single-point mutation operation of the genetic algorithm,which effectively improves the search performance of the algorithm.Experimental results show that,compared with other strategies,APSOGA-based scheduling strategy can effectively reduce the time and cost of reliability-constrained scientific workflows in cloud environments.
关 键 词:云计算 可靠性约束 不确定性 多目标优化 三角模糊数
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7