检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高鑫 李林源 占运鹏 马健[1] GAO Xin;LI Linyuan;ZHAN Yunpeng;MA Jian(Air Force Engineering University,Xi’an 710038)
机构地区:[1]空军工程大学,西安710038
出 处:《火控雷达技术》2023年第3期56-62,共7页Fire Control Radar Technology
摘 要:现代战场环境的复杂性以及新一代飞机作战平台的高隐身突防性能给预警探测带来较大挑战。单架预警机执行任务时不可避免地出现探测盲区且其指挥控制效能也大打折扣,难以满足实际作战需求。为了提高对隐身目标的探测性能同时减小盲区,对机载预警雷达组合探测航线的协同策略进行了分析研究。首先,建立了雷达发现概率预测模型,针对隐身目标的雷达散射截面(Radar Cross Section,RCS)在不同角域呈现出来的不同特性进行定量分析。再根据基本雷达方程和探测概率公式得到目标发现概率。最后针对两种典型预警机组合航线模式的协同探测效能进行了仿真分析与评估,为预警机编队在不同战场态势下的稳定探测能力提升提供组合航线与相关参数的优化建议。The complexity of the modern battlefield and the stealth penetration performance of the new generation aircraft combat platforms bring great challenges to early-warning detection.When a single AWACS aircraft performs its tasks,it is inevitable that there are detection blind zones,and its command and control effectiveness is greatly reduced,so that it is difficult to meet actual combat needs.In order to improve the detection performance for stealth targets and reduce the blind zones,the combined route based coordinated detection strategy of airborne early-warning radar is analyzed and studied.Firstly,a radar detection probability prediction model is established,and the different characteristics of the radar cross section(RCS)of the stealth targets are quantitatively analyzed in different angle conditions.The target detection probability is obtained according to the basic radar equation and the detection probability formula.Finally,the coordinated detection efficiency of two typical AWACS combined routes is simulated and evaluated,which provides optimization suggestions about combined routes and related parameters for improving the stable detection capability of AWACS aircraft formation in different battlefield situations.
分 类 号:TN95[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127