阿克达拉O_(3)与PM_(2.5)的污染特征及潜在来源研究  被引量:4

Pollution characteristics and sources of O_(3) and PM_(2.5) at Akedala Atmospheric Background Station

在线阅读下载全文

作  者:谢翔 赵竹君 李淑婷 董垠希 蔡海洋 李佳林 李敖 XIE Xiang;ZHAO Zhujun;LI Shuting;DONG Yinxi;CAI Haiyang;LI Jialin;LI Ao(Aletai Meteorological Bureau,Aletai 836500;Institute of Desert Meteorology,China Meteorological Administration,Urumqi 830002;Field Scientific Experiment Base of Akdala Atmospheric Background,China Meteorological Administration,Urumqi 830002;Taklimakan National Field Scientific Observation and Research Station of Desert Meteorology,Xinjiang Key Laboratory of Desert Meteorology and Sandstorm,Taklimakan Desert Meteorology Field Experiment Station,China Meteorological Administration,Urumqi 830002)

机构地区:[1]阿勒泰地区气象局,阿勒泰836500 [2]中国气象局乌鲁木齐沙漠气象研究所,乌鲁木齐830002 [3]中国气象局阿克达拉大气本底野外科学试验基地,乌鲁木齐830002 [4]塔克拉玛干沙漠气象国家野外科学观测研究站,新疆沙漠气象与沙尘暴重点实验室,中国气象局塔克拉玛干沙漠气象野外科学试验基地,乌鲁木齐830002

出  处:《环境科学学报》2023年第9期244-256,共13页Acta Scientiae Circumstantiae

基  金:中国沙漠气象科学研究基金(No.Sqj2022021)。

摘  要:基于2021年3月1日-2022年2月28日阿克达拉大气本底站PM_(2.5)和O_(3)(P-O)逐小时质量浓度资料以及2012-2022年PM2.5、部分反应性气体(NO_(2)、CO)观测资料和同期气象数据,采用后向轨迹聚类分析、潜在来源贡献函数法(PSCF)和浓度权重轨迹分析法(CWT)进行研究,以探究阿克达拉站P-O浓度变化特征和P-O相关性及潜在来源.结果表明:(1)阿克达拉站观测期间O_(3)-8 h浓度为49.21~128.22μg·m^(-3),年平均浓度为89.58μg·m^(-3),且春季(105.36μg·m^(-3))>夏季(103.05μg·m^(-3))>冬季(75.51μg·m^(-3))>秋季(75.32μg·m^(-3)),O_(3)浓度呈春夏高、秋冬低的季节变化特征,日变化呈单峰型特征.PM_(2.5)日平均浓度为2.06~40.01μg·m^(-3),年平均浓度为9.43μg·m^(-3),且冬季(14.45μg·m^(-3))>春季(9.36μg·m^(-3))>秋季(7.24μg·m^(-3))>夏季(6.77μg·m^(-3)),PM_(2.5)浓度呈冬春高、夏秋低的季节变化特征,日变化呈双峰双谷型特征.(2)整体而言,P-O呈负相关,但在夏季和秋季之间存在弱的正相关关系.(3)综合潜在来源分析发现,阿克达拉站春季、夏季和秋季多受到来自哈萨克斯坦与俄罗斯的长距离输送气流的影响;冬季受蒙古高压影响,偏东气流增多.WPSCF和WCWT分析结果具有较好的一致性,表明P-O春、夏、秋三季的污染源多来自哈萨克斯坦与俄罗斯交界地带,而冬季境内本地污染源增多.Based on the hourly mass concentration data of PM_(2.5) and O_(3)(P-O)at Akedala Background Atmospheric Station from March 1,2021 to February 28,2022,the observational data of PM_(2.5) and some reactive gases(NO_(2),CO)from 2012 to 2022,as well as the meteorological data during the same period,P-O concentration variation characteristics,P-O correlation,and P-O sources were explored by utilizing the backward-trajectory clustering analysis method,potential source contribution function(PSCF)method,and concentration-weight trajectory analysis(CWT)method.The results showed that:①During the observation period,the O_(3)-8h concentration at Akedala Station ranged from 49.21 to 128.22μg·m^(-3),with an annual average concentration of 89.58μg·m^(-3) and a trend of spring(105.36μg·m^(-3))>summer(103.05μg·m^(-3))>winter(75.51μg·m^(-3))>autumn(75.32μg·m^(-3)).The seasonal variation of O_(3) concentration was characterized as high in spring and summer and low in autumn and winter,and the daily variation of O_(3) concentration showed a single-peaked feature.In addition,the daily average concentration of PM_(2.5) ranged from 2.06 to 40.01μg·m^(-3),with an annual average concentration of 9.43μg·m^(-3) and a trend of winter(14.45μg·m^(-3))>spring(9.36μg·m^(-3))>autumn(7.24μg·m^(-3))>summer(6.77μg·m^(-3)).The seasonal variation of PM_(2.5) concentration was characterized as high in winter and spring and low in summer and autumn,and the daily variation of PM_(2.5) concentration showed a double-peaked and double-dip feature.②Overall,P-O showed a negative correlation,but there was a weak positive correlation between the two in summer and autumn.③After analyzing the sources of P-O,it was found that in spring,summer and autumn,Akedala Station was mainly affected by the long-distance transportation of air flows from Kazakhstan and Russia.In winter,the Station was influenced by high atmospheric pressure from Mongolia and there were more eastern winds.The results of WPSCF and WCWT analyses were consistent,indic

关 键 词:阿克达拉大气本底站 PM_(2.5) O_(3) 后向轨迹聚类分析 潜在来源贡献函数法(PSCF) 浓度权重轨迹分析法(CWT) 

分 类 号:X51[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象