检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Duan Xu Dai Ji Chao Zhang Quan Qing Fang Long Fa Sun Ben Tuo Zheng
机构地区:[1]School of Science,Jimei University,Xiamen,361021,P.R.China [2]School of Science,Hubei University of Technology,Wuhan,430068,P.R.China [3]Key Laboratory of Applied Mathematics of Fujian Province University,Putian University,Putian,351100,P.R.China [4]School of Mathematics and Physics,North China Electric Power University,Baoding,071003,P.R.China [5]Department of Mathematical Sciences,University of Memphis,Memphis,TN,38152,USA
出 处:《Acta Mathematica Sinica,English Series》2023年第9期1805-1816,共12页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China(Grant Nos.12126329,12171266,12126346,12101234);Simons Foundation(Grant No.585081);Educational Commission of Fujian Province(Grant No.JAT190589);Natural Science Foundation of Fujian Province(Grant No.2021J05237);the research start-up fund of Jimei University(Grant No.ZQ2021017);the research start-up fund of Putian University(Grant No.2020002);the Natural Science Foundation of Hebei Province(Grant No.A2022502010);the Fundamental Research Funds for the Central Universities(Grant No.2023MS164);the Natural Science Foundation of Fujian Province(Grant No.2023J01805)。
摘 要:Let X and Y be two pointed metric spaces.In this article,we give a generalization of the Cheng-Dong-Zhang theorem for coarse Lipschitz embeddings as follows:If f:X→Y is a standard coarse Lipschitz embedding,then for each x^(*)∈Lip_(0)(X)there existα,γ>0 depending only on f and Q_(x)*∈Lip_(0)(Y)with‖Q_(x)*‖_(Lip)≤α‖x^(*)‖_(Lip)such that|Q_(x)*f(x)-x^(*)(x)|≤γ‖x^(*)‖_(Lip),for all x∈X.Coarse stability for a pair of metric spaces is studied.This can be considered as a coarse version of Qian Problem.As an application,we give candidate negative answers to a 58-year old problem by Lindenstrauss asking whether every Banach space is a Lipschitz retract of its bidual.Indeed,we show that X is not a Lipschitz retract of its bidual if X is a universally left-coarsely stable space but not an absolute cardinality-Lipschitz retract.If there exists a universally right-coarsely stable Banach space with the RNP but not isomorphic to any Hilbert space,then the problem also has a negative answer for a separable space.
关 键 词:Lindenstrauss Problem coarse Lipschitz embedding coarse stability Banach space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.82.202