场景化毫米波特征选择和波束预测算法  被引量:1

Scenario-Based mmWave Feature Selection and Beam Prediction Algorithm

在线阅读下载全文

作  者:孙长印 梁有为[1] 江帆 王军选 SUN Changyin;LIANG Youwei;JIANG Fan;WANG Junxuan(School of Communications and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121;Shaanxi Key Laboratory of Information and Communication Network and Security,Xi’an University of Posts and Telecommunications,Xi’an 710121)

机构地区:[1]西安邮电大学通信与信息工程学院,西安710121 [2]西安邮电大学陕西省信息通信网络及安全重点实验室,西安710121

出  处:《电子科技大学学报》2023年第5期689-698,共10页Journal of University of Electronic Science and Technology of China

基  金:国家自然科学基金(61871321,62071377)。

摘  要:为减少毫米波波束训练的时间和功耗开销,提出了一种基于通信场景的波束特征选择和预测算法。首先,根据功率损耗概率最小化准则选择最优特征波束,并利用最优波束概率生成特征波束集(波束索引的子集)。其次,为了获得通信场景的最优波束概率,采用基于局部学习的特征选择聚类算法(LLC-fs)。最后,由于场景化特征波束集与最优波束之间为隐式、非线性映射关系,利用了DNN模型逼近该映射,进而使用离线训练模型实现从特征波束集到最优波束的预测。仿真结果表明,使用离线训练场景化DNN模型即可在线预测最优毫米波波束。预测性能可以逼近穷举波束搜索算法,并有效减小波束搜索的开销。To reduce the time and power overhead of millimeter wave(mmWave)beam training,a beam feature selection and prediction algorithm based on communication scenarios is proposed.First,the optimal feature-beam is selected according to the power loss probability minimization criterion,and a feature-beam set(a subset of beam indices)is generated using the optimal beam probability.Second,to obtain the optimal beam probability for communication scenarios,the local learning based clustering algorithm with feature selection(LLC-fs)is adopted.Finally,since there is an implicit and nonlinear mapping relationship between the scene-based feature-beam set and the optimal beam,the DNN model is used to approximate the mapping,and the offline training model is used to realize the prediction from the feature-beam set to the optimal beam.The simulation results show that the optimal mmWave beam can be predicted online by using the offline-trained scene-based DNN model.The prediction performance can approach the exhaustive beam search algorithm and effectively reduce the overhead of beam search.

关 键 词:波束预测 波束训练 深度神经网络 特征选择 毫米波通信 

分 类 号:TN928[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象