基于多方向DTCWT和域自适应学习的遥感图像薄云去除  

Thin Cloud Removal from Remote Sensing Images Using Multidirectional Dual Tree Complex Wavelet Transform and Transfer Least Square Support Vector Regression

在线阅读下载全文

作  者:孙茜 孙翠敏 黎晓伊 SUN Xi;SUN Cuimin;LI Xiaoyi(Department of Computer,Anhui Post and Telecommunication College,Hefei 230031,Anhui;Guangxi University,Nanning 530000,Guangxi;Anhui Sun Create Electronics Co.,Ltd,Hefei 230031,Anhui)

机构地区:[1]安徽邮电职业技术学院,安徽合肥230031 [2]广西大学,广西南宁530000 [3]安徽四创电子股份有限公司,安徽合肥230031

出  处:《湖南工业职业技术学院学报》2023年第4期17-20,37,共5页Journal of Hunan Industry Polytechnic

基  金:安徽省高校自然科学研究重点项目“基于多方向DTCWT和域自适应学习的遥感图像薄云去除研究”(项目编号:KJ2021A1577);安徽省高校自然科学研究重点项目“基于Tangle区块链的大数据访问控制研究”(项目编号:2022AH052957)。

摘  要:如果遥感图像被薄云污染,将会直接影响图像判读,现给出一种多方向DTCWT分解结合迁移LSSVR低频学习的遥感图像薄云去除算法,对遥感图像进行多方向多尺度分解,再对包含薄云信息的源图像低频系数值进行预测,并增强包含地物信息的高频部分,最终去除含云图像上的薄云。实验结果表明,该方法有助于保持含云图像的地物细节信息,并有效添加多源多时相图像的地物轮廓信息,可以实现较好的薄云去除。If remote sensing images suffer from thin cloud pollution,image interpretation will be affected.A thin cloud removal algorithm for cloud-contaminated remote sensing images is proposed by combining a multidirectional dual tree complex wavelet transform(M-DTCWT)with domain adaptation transfer least square support vector regression(T-LSSVR).First,M-DTCWT is used to decompose remote sensing images into multiscale and multidirectional sub-bands.Then the low frequency sub-band coefficients of the cloud-free regions on target images and source domain images are used as samples for a T-LSSVR model,which can be used to predict those of the cloud regions on cloud-contaminated images.Finally,by enhancing the high-frequency coefficients and replacing the low-frequency coefficients,the thin clouds on cloudcontaminated images are removed.Experimental results show that our method could keeping the details of the ground objects of cloud-contaminated images and can effectively learn the contour information from multisource and multitemporal images,therefore,the proposed method achieves a good effect of thin cloud removal.

关 键 词:遥感图像 薄云去除 迁移学习 小波变换 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象