基于脑电小波特征与长短期记忆神经网络的驾驶疲劳识别方法  被引量:1

Driving Fatigue Recognition Based on EEG Wavelet Features and LSTM Neural Network

在线阅读下载全文

作  者:罗旭[1] 张岩[1] 杨亮[1] Luo Xu;Zhang Yan;Yang Liang(Shenyang Normal University,Shenyang 110034)

机构地区:[1]沈阳师范大学,沈阳110034

出  处:《汽车工程师》2023年第10期22-28,共7页Automotive Engineer

基  金:国家社会科学基金项目(BLA210217);沈阳师范大学科研项目(JS202014)。

摘  要:为准确识别驾驶疲劳,提出基于小波特征和长短期记忆(LSTM)神经网络分类器的驾驶疲劳识别方法。在真实驾驶环境下采集了驾驶员非疲劳状态与驾驶疲劳状态的脑电信号,对脑电信号进行小波分解,计算4个小波系数的统计值、能量值和相对能量作为特征数据,用特征数据对LSTM神经网络进行分类训练与测试。试验结果表明,随着所构建特征数据的通道数量增多,LSTM神经网络的分类性能逐渐提高,特别是在14通道方案下,平均分类准确率约为96.1%。In order to recognize driving fatigue,this paper proposed a fatigue detection method based on wavelet characteristics and Long Short-Term Memory(LSTM)neural network classifier.Two kinds of EEG signals(non-fatigue and driving fatigue)were collected in the real driving environment.The EEG signals were decomposed by wavelet,and the statistical values,energy values and relative energy values of four wavelet coefficients were calculated as the characteristic data,which were used for classification training and test of the LSTM neural network.The results of experiment show that the classification performance of LSTM neural network gradually improves with the increase of the number of channels involved in constructing characteristic data.Especially,in the scheme of 14 channels,the average classification accuracy is about 96.1%.

关 键 词:脑电图 小波 长短期记忆神经网络 驾驶疲劳识别 

分 类 号:U471.15[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象