检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈昌燕
机构地区:[1]江苏联合职业技术学院盐城机电分院,江苏盐城224000
出 处:《焦作师范高等专科学校学报》2023年第3期70-76,共7页Journal of Jiaozuo Teachers College
基 金:盐城市教科院职业教育教学改革研究课题“中职数学信息化教学资源开发与运用研究”(Zj1701)。
摘 要:针对临近点算法的尺度梯度问题,对多参数及超松弛邻近尺度邻近点算法进行了研究.验证了多参数临近尺度梯度算法、超松弛邻近尺度梯度算法序列的强收敛性和有界扰动恢复性,分别进行Superiorization算法的算例分析.结果显示,超松弛邻近尺度梯度算法在运行耗时、迭代次数上均明显好于多参数临近尺度梯度算法.相对于多参数临近尺度梯度算法,多参数邻近尺度梯度算法的有界扰动算法、结合Superiorization的多参数临近尺度梯度算法、超松弛邻近尺度梯度算法性能更优.
关 键 词:多参数 邻近尺度 超松弛 邻近点 Superiorization
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38