侧信道能量信息测试向量泄漏评估技术  

Test Vector Leakage Assessment Technique of Side-channel Power Information

在线阅读下载全文

作  者:郑震 严迎建[1] 刘燕江 ZHENG Zhen;YAN Yingjian;LIU Yanjiang(Information Engineering University of Strategic Support Force,Zhengzhou 450001,China)

机构地区:[1]战略支援部队信息工程大学,郑州450001

出  处:《电子与信息学报》2023年第9期3109-3117,共9页Journal of Electronics & Information Technology

摘  要:侧信道能量分析攻击技术以其计算复杂度低和通用性强等优势,给各类密码产品带来了严峻的安全挑战。抗能量分析攻击能力的评估已经成为密码产品安全性测评的重要环节。测试向量泄漏评估(TVLA)是一种基于假设检验的能量信息泄漏评估方法,具有简单高效和可操作性强等特点,目前被广泛应用于密码产品的安全性评估实验中。为全面把握TVLA技术机理及研究现状,该文首先对TVLA技术进行了概述,阐述了其实现原理并介绍了其实施过程,紧接着对特定和非特定两种TVLA的优势与不足进行了对比,随后参考已有研究,对TVLA的局限性进行了深入分析和归纳,在此基础上重点介绍并分析了已有的TVLA的改进方法,最后对TVLA未来可能的发展方向进行了展望。The side-channel power analysis attack technique,with its advantages of low computational complexity and high generality,poses a critical security challenge to all kinds of cryptographic implementations.The assessment of resistance to power analysis attacks has become an essential aspect of cryptographic product security evaluation.Test Vector Leakage Assessment(TVLA)is a power information leakage evaluation method based on hypothesis testing techniques,which is highly efficient and operable,and is now widely used in security evaluation experiments of cryptographic products.In order to have a comprehensive understanding of the mechanism of TVLA technology and the current status of research,this paper begins with an overview of TVLA technology,including an explanation of its implementation principles and a description of its implementation process,followed by a comparison of the advantages and disadvantages of both specific and non-specific TVLA.The limitations of TVLA are then analyzed and summarized in depth with reference to existing studies,based on which existing approaches for improving TVLA are highlighted and analyzed,and finally the possible future directions of TVLA are prospected.

关 键 词:安全评估 侧信道 能量分析攻击 测试向量评估 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象