检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李致远[1,2,3] 徐丙磊 周颖仪 LI Zhiyuan;XU Binglei;ZHOU Yingyi(Jiangsu University,School of Computer Science and Communication Engineering,Zhenjiang 212013,China;Jiangsu Provincial Key Laboratory of Industrial Network Security Technology,Zhenjiang 212013,China;Jiangsu Province Ubiquitous Data Intelligent Perception and Analysis Application Engineering Research Center,Zhenjiang 212013,China)
机构地区:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013 [2]江苏省工业网络安全技术重点实验室,江苏镇江212013 [3]江苏省泛在数据智能感知与分析应用工程研究中心,江苏镇江212013
出 处:《通信学报》2023年第9期115-126,共12页Journal on Communications
基 金:国家重点研发计划基金资助项目(No.2020YFB1005503);江苏省自然科学基金资助项目(No.BK20201415)。
摘 要:为了监管账户余额模型公链上的交易,有必要对该类区块链上的交易进行地址分类研究。基于此,提出了一种基于图神经网络的账户余额模型区块链地址分类方法(简称AJKGS-ABCM)以实现区块链地址的分类,为区块链交易追踪提供有效的支持。该方法将区块链交易数据建模为图结构,以地址为节点,交易为边,提出AJK-GraphSAGE算法学习图的嵌入表示,模型的输入只需要节点及其采样的邻居节点集合。同时,模型引入注意力机制及跳跃知识结合策略,自适应地为不同层的表示分配权重,并在不同层间共享信息,提高了训练速度和泛化能力。最后进行了实验对比,结果表明该模型在准确度、召回率和F1分数上性能优于其他方法。To regulate the transactional activities on the public blockchain involving account balance models,it is necessary to conduct research on address classification for transactions on such blockchains.A blockchain address classification method,named AJKGS-ABCM(attention jumping knowledge graph SAGE account-based blockchain classification model),was proposed to categorize blockchain addresses,providing effective support for blockchain transaction tracking.Blockchain transaction data was represented as a graph structure,with addressed as nodes and transactions as edges.The AJK-GraphSAGE algorithm was introduced to learn embedded representations of the graph,where the model’s input required only nodes and their sampled neighboring node sets.Simultaneously,attention mechanisms and skip-connection knowledge integration strategies were incorporated into the model,allowing for adaptive weight allocation across different layers and information sharing between various levels,thereby enhancing training speed and generalization capabilities.Finally,experimental comparisons are conducted,demonstrating superior performance in terms of accuracy,recall,and F1 score compared to other methods.
关 键 词:账户余额模型区块链 地址分类 图神经网络 注意力机制 跳跃知识
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49