General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts:Mobility edges and Lyapunov exponents  

在线阅读下载全文

作  者:蒋盛莲 刘彦霞 郎利君 Sheng-Lian Jiang;Yanxia Liu;Li-Jun Lang(School of Physics,South China Normal University,Guangzhou 510006,China;School of Physics and Astronomy,Yunnan University,Kunming 650091,China;Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,School of Physics,South China Normal University,Guangzhou 510006,China)

机构地区:[1]School of Physics,South China Normal University,Guangzhou 510006,China [2]School of Physics and Astronomy,Yunnan University,Kunming 650091,China [3]Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,School of Physics,South China Normal University,Guangzhou 510006,China

出  处:《Chinese Physics B》2023年第9期79-86,共8页中国物理B(英文版)

基  金:the National Natural Science Foundation of China(Grant No.12204406);the National Key Research and Development Program of China(Grant No.2022YFA1405304);the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。

摘  要:We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.

关 键 词:non-Hermitian mosaic model mosaic-to-non-mosaic mapping mobility edge Lyapunov exponent 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象