Analytical three-periodic solutions of Korteweg-de Vries-type equations  

在线阅读下载全文

作  者:陈觅 王振 Mi Chen;Zhen Wang(School of Mathematical Science,Dalian University of Technology,Dalian 116024,China;School of Mathematical Science,Beihang University,Beijing 100191,China)

机构地区:[1]School of Mathematical Science,Dalian University of Technology,Dalian 116024,China [2]School of Mathematical Science,Beihang University,Beijing 100191,China

出  处:《Chinese Physics B》2023年第9期229-236,共8页中国物理B(英文版)

基  金:the National National Science Foundation of China(Grant Nos.52171251,U2106225,and 52231011);the Science and Technology Innovation Fund of Dalian City(Grant No.2022JJ12GX036)。

摘  要:Based on the direct method of calculating the periodic wave solution proposed by Nakamura,we give an approximate analytical three-periodic solutions of Korteweg-de Vries(KdV)-type equations by perturbation method for the first time.Limit methods have been used to establish the asymptotic relationships between the three-periodic solution separately and another three solutions,the soliton solution,the one-and the two-periodic solutions.Furthermore,it is found that the asymptotic three-soliton solution presents the same repulsive phenomenon as the asymptotic three-soliton solution during the interaction.

关 键 词:Hirota bilinear method Riemann theta function three-periodic solution 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象