检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝茂生 管鹏飞 Maosheng Hao;Pengfei Guan(Beijing Computational Science Research Center,Beijing 100193,China)
机构地区:[1]Beijing Computational Science Research Center,Beijing 100193,China
出 处:《Chinese Physics B》2023年第9期514-521,共8页中国物理B(英文版)
基 金:Beijing Computational Science Research Center(CSRC);the National Natural Science Foundation of China(Grant Nos.52161160330 and U2230402)。
摘 要:Based on machine learning,the high-dimensional fitting of potential energy surfaces under the framework of first principles provides density-functional accuracy of atomic interaction potential for high-precision and large-scale simulation of alloy materials.In this paper,we obtained the high-dimensional neural network(NN)potential function of uranium metal by training a large amount of first-principles calculated data.The lattice constants of uranium metal with different crystal structures,the elastic constants,and the anisotropy of lattice expansion of alpha-uranium obtained based on this potential function are highly consistent with first-principles calculation or experimental data.In addition,the calculated formation energy of vacancies in alpha-and beta-uranium also matches the first-principles calculation.The calculated site of the most stable self-interstitial and its formation energy is in good agreement with the findings from density functional theory(DFT)calculations.These results show that our potential function can be used for further large-scale molecular dynamics simulation studies of uranium metal at low pressures,and provides the basis for further construction of potential model suitable for a wide range of pressures.
关 键 词:machine learning potential uranium metal first-principles calculation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31