Important edge identification in complex networks based on local and global features  被引量:1

在线阅读下载全文

作  者:宋家辉 Jia-Hui Song(College of Science,China Three Gorges University,Yichang 443002,China)

机构地区:[1]College of Science,China Three Gorges University,Yichang 443002,China

出  处:《Chinese Physics B》2023年第9期573-585,共13页中国物理B(英文版)

摘  要:Identifying important nodes and edges in complex networks has always been a popular research topic in network science and also has important implications for the protection of real-world complex systems.Finding the critical structures in a system allows us to protect the system from attacks or failures with minimal cost.To date,the problem of identifying critical nodes in networks has been widely studied by many scholars,and the theory is becoming increasingly mature.However,there is relatively little research related to edges.In fact,critical edges play an important role in maintaining the basic functions of the network and keeping the integrity of the structure.Sometimes protecting critical edges is less costly and more flexible in operation than just focusing on nodes.Considering the integrity of the network topology and the propagation dynamics on it,this paper proposes a centrality measure based on the number of high-order structural overlaps in the first and second-order neighborhoods of edges.The effectiveness of the metric is verified by the infection-susceptibility(SI)model,the robustness index R,and the number of connected branchesθ.A comparison is made with three currently popular edge importance metrics from two synthetic and four real networks.The simulation results show that the method outperforms existing methods in identifying critical edges that have a significant impact on both network connectivity and propagation dynamics.At the same time,the near-linear time complexity can be applied to large-scale networks.

关 键 词:complex networks high-order structure edge importance CONNECTIVITY propagation dynamics 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象