基于RGB信息的地面激光点云滤波算法  

Terrestrial Laser Point Cloud Filtering Algorithm Based on RGB Information

在线阅读下载全文

作  者:管圣功 罗洵 伍法权 张芳 GUAN Shenggong;LUO Xun;WU Faquan;ZHANG Fang(School of Civil Engineering,Shaoxing University,Shaoxing,Zhejiang 312000;Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province,Shaoxing,Zhejiang 312000)

机构地区:[1]绍兴文理学院土木工程学院,浙江绍兴312000 [2]浙江省岩石力学与地质灾害重点实验室,浙江绍兴312000

出  处:《绍兴文理学院学报》2023年第8期1-10,共10页Journal of Shaoxing University

基  金:浙江省基础公益研究计划项目“裂隙岩体结构面三维智能识别与参数精细化解译研究”(LHQ20D020001);浙江省重点研发计划项目“自然灾害防治技术、装备研究和应用示范—交通基础设施全生命周期地质灾害预警与防治技术装备研发”(2020C03092).

摘  要:随着智慧城市、智能交通、全球测图等产业的飞速发展,对激光点云数据的需求与要求也越来越高.在岩土工程领域,为了快速获得精确的岩体结构面信息,对去除植被点云产生的噪点提出了更多需求.针对岩质陡峭边坡的植被点云去除问题,传统的坡度法和布料法等算法表现不佳,提出一种基于RGB信息的滤波算法.该算法提出了红绿差异指数,选择合适的阈值进行植被点云滤波并对滤波结果进行误差分析和地表特征保留率评价.该算法能在基本保留岩体结构信息的前提下达到良好滤波效果,进一步证实了RGB信息可以用于高陡边坡的植被去除.The demand and requirements for point cloud data increase as smart cities,intelligent transportation,global mapping and other industries develop rapidly.In the field of geotechnical engineering,in order to quickly obtain accurate information of rock mass discontinuities,there is an increasing need to remove noise from vegetation point clouds.The traditional slope method and cloth method do not perform well in approaching vegetation point cloud removal on steep rock slopes.A filtering algorithm based on RGB information was accordingly proposed.The algorithm comes up with a red-green difference index,selects the appropriate threshold to filter the vegetation point cloud,and carries out an error analysis of the filtering results and evaluation of the retention rate of surface features.This algorithm can achieve good filtering effect on the premise of basically retaining the information of rock mass structure,thereby further confirming that RGB information can be used for vegetation removal of high and steep slopes.

关 键 词:三维激光扫描 点云 植被去除 植被指数 阈值滤波 

分 类 号:TU198[建筑科学—建筑理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象