THE GLOBAL LIPSCHITZ SOLUTION FOR A PEELING MODEL  

在线阅读下载全文

作  者:黎前锋 张永前 Qianfeng LI;Yongqian ZHANG(School of Mathematical Sciences and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,East China Normal University,Shanghai 200241,China;School of Mathematical Sciences,Fudan University,Shanghai 200433,China)

机构地区:[1]School of Mathematical Sciences and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,East China Normal University,Shanghai 200241,China [2]School of Mathematical Sciences,Fudan University,Shanghai 200433,China

出  处:《Acta Mathematica Scientia》2023年第5期2263-2278,共16页数学物理学报(B辑英文版)

基  金:supported by the NSFC(12271507);the Science and Technology Commission of Shanghai Municipality(22DZ2229014);supported by the NSFC(12271507)。

摘  要:This paper focusses on a peeling phenomenon governed by a nonlinear wave equation with a free boundary.Under the hypotheses that the total variation of the intial data and the boundary data are small,the global existence of a weak solution to the nonlinear problem(1.1)-(1.3)is proven by a modified Glimm scheme.The regularity of the peeling front is established,and the asymptotic behaviour of the obtained solution and the peeling front at infinity is also studied.

关 键 词:peeling model nonlinear wave solution free boundary Glimm scheme 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象