检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张振国 张奇 张劲 卢善富 相艳 ZHANG Zhenguo;ZHANG Qi;ZHANG Jin;LU Shanfu;XIANG Yan(Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices/School of Space and Environment,Beihang University,Beijing 100191,China)
机构地区:[1]北京航空航天大学空间与环境学院/仿生能源材料与器件北京市重点实验室,北京100191
出 处:《武汉大学学报(理学版)》2023年第4期476-491,共16页Journal of Wuhan University:Natural Science Edition
基 金:国家自然科学基金(22178012,U19A2017)。
摘 要:质子交换膜燃料电池的工作温度极大地影响其工作效率、抗毒化性能和水热管理系统的复杂程度。而常用的液态小分子质子溶剂(水和磷酸)在宽温域条件下难以稳定保持,限制了质子交换膜的质子传导性能。本文从不同质子溶剂的传导机制出发,梳理了近年来磺酸型、磷酸掺杂型及膦酸接枝型质子交换膜实现宽温域质子传递的研究思路、进展和存在的局限性,并对宽温域质子交换膜未来发展方向进行了展望。The operating temperature of a proton exchange membrane fuel cell dramatically affects its efficiency,anti-poisoning performance,and the complexity of the hydrothermal management system.Thus,the development of wide-temperature-range proton exchange membranes is highly desirable.However,the common liquid small-molecule protic solvent(water and phosphoric acid)has poor thermal stability under wide temperature range,which limits the proton conductivity of proton exchange membranes.Based on the conduction mechanisms of different protic solvent,in this review article,we summarized the recent progress and limitations in different wide-temperature-range proton exchange membranes,including sulfonic acid proton exchange membranes,phosphoric acid doped proton exchange membranes and phosphonated proton exchange membranes.In addition,we also gave an overview of the future development of wide-temperature-range proton exchange membranes.
分 类 号:TK91[动力工程及工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42