A Note on Edge Coloring of Linear Hypergraphs  

在线阅读下载全文

作  者:Qi WANG Xia ZHANG 

机构地区:[1]School of Mathematics and Statistics,Shandong Normal University,Shandong 250358,P.R.China

出  处:《Journal of Mathematical Research with Applications》2023年第5期535-541,共7页数学研究及应用(英文版)

基  金:Supported by the National Natural Science Foundation of China (Grant No. 12071265);the Natural Science Foundation of Shandong Province (Grant No. ZR2019MA032)。

摘  要:A k-edge coloring of a hypergraph H is a coloring of the edges of H with k colors such that any two intersecting edges receive distinct colors. The Erdos-Faber-Lovasz conjecture states that every loopless linear hypergraph with n vertices has an n-edge coloring. In 2021,Kang, Kelly, K¨uhn, Methuku and Osthus confirmed the conjecture for sufficiently large n. In this paper, the conjecture is verified for collision-weak hypergraphs. This result strictly extends two related ones of Bretto, Faisant and Hennecart in 2020.

关 键 词:linear hypergraph edge coloring Erdos-Faber-Lovasz conjecture 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象