基于CEEMDAN与改进核极限学习机的S700K转辙机健康状态诊断  被引量:4

Health state diagnosis of S700K switch machine based on CEEMDAN and improved kernel based extreme learning machine

在线阅读下载全文

作  者:米根锁[1] 窦媛媛 Mi Gensuo;Dou Yuanyuan(School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学自动化与电气工程学院,兰州730070

出  处:《电子测量与仪器学报》2023年第6期232-239,共8页Journal of Electronic Measurement and Instrumentation

基  金:甘肃省科学计划项目(21JR7RA305);中央引导地方科技发展资金项目(22ZY1QA005);兰州交通大学青年科学研究基金项目(1200061027)资助。

摘  要:针对S700K转辙机健康状态分类过于粗放、诊断速度慢、效率低的问题,提出一种基于CEEMDAN与改进核极限学习机(kernel based extreme learning machine,KELM)的诊断方法。首先,对S700K转辙机功率数据进行自适应噪声完备集合经验模态分解,得到6个本征模态函数(intrinsic mode function,IMF);然后,计算本征模态函数的模糊熵值(fuzzy entropy,fuzzyEn,FE)作为表征转辙机健康状态的特征参数;最后,利用麻雀算法(sparrow search algorithm,SSA)改进的核极限学习机对9种健康状态进行健康诊断,并与SVR和ELM模型进行对比。仿真结果表明,改进核极限学机模型准确率、精确率、召回率等指标分别达到97.8%、98.0%、97.8%,相较于SVR和ELM模型,SSA-KELM模型在保证运行速度的基础上,将诊断准确率至少提高2.2%。Aiming at the problems of extensive classification of health status of S700K switch machine,slow diagnosis speed and low efficiency;a diagnosis method based on CEEMDAN and kernel based extreme learning machine(KELM)is proposed.Firstly,the power data of S700K switch machine is decomposed by adaptive noise complete set empirical mode decomposition,and six intrinsic mode functions(IMF)are obtained.Then,the fuzzy entropy(FE)value of the intrinsic mode function is calculated as the characteristic parameter to characterize the health state of the switch machine.Finally,the kernel limit learning machine improved by sparrow search algorithm(SSA)is used to diagnose nine health states,and compared with SVR and ELM models.The simulation results show that the accuracy rate and the recall rate of the improved kernel based extreme learning machine model are 97.8%,98.0%and 97.8%respectively.Compared with SVR and ELM models,SSA-KELM model improves the diagnostic accuracy rate by at least 2.2%on the basis of ensuring the running speed.

关 键 词:CEEMDAN 改进核极限学习机 S700K转辙机 健康状态诊断 

分 类 号:U284[交通运输工程—交通信息工程及控制]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象