检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪旻 乔玲玲[3] 方致伟 林锦添[3] 伍荣波 陈锦明 刘招祥 张海粟 程亚 Wang Min;Qiao Lingling;Fang Zhiwei;Lin Jintian;Wu Rongbo;Chen Jinming;Liu Zhaoxiang;Zhang Haisu;Cheng Ya(The Extreme Optoelectromechanix Laboratory,School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China;Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,School of Physics and Electronic Science,East China Normal University,Shanghai 200241,China;State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China)
机构地区:[1]华东师范大学物理与电子科学学院极端光机电实验室,上海200241 [2]华东师范大学纳光电集成与先进装备教育部工程研究中心,上海200241 [3]中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海201800
出 处:《光学学报》2023年第16期209-232,共24页Acta Optica Sinica
基 金:国家重点研发计划(2019YFA0705000,2022YFA1205100,2022YFA1404600);国家自然科学基金(12192251,12104159,12004116,11933005,12134001,61991444,12174113,12274133,12204176,12274130);上海市“科技创新行动计划”集成电路科技支撑专项项目(21DZ1101500);上海市青年科技英才扬帆计划(21YF1410400)。
摘 要:光子集成器件以极低的成本和功耗实现覆盖从光源、调制、非线性频率转换、光放大到光探测的全功能单片集成,对光电信息处理系统产生显著而深远的影响,并推动一系列诸如高速通信、人工智能、量子信息,以及精密测量等重大应用领域的持续发展。近年来,铌酸锂薄膜光子器件得益于离子揭膜技术和微纳刻蚀工艺的进步,以宽的工作窗口、低的传输损耗、大的调制带宽、高的非线性光学转换效率和兼容大规模光子集成等优点,在集成光子学领域占据重要一席之地。本文介绍了利用超快激光光刻结合化学机械抛光技术在掺杂有源发光稀土离子的铌酸锂薄膜衬底上实现片上激光与光放大的最新进展,包括在波导放大器中实现了超过20 dB的最大内部净增益,并且在高品质铌酸锂微盘中演示了具有454.7 Hz窄线宽的电光可调谐单频激光器,演示了单片集成的电驱动微环激光器,以及连续光刻方式实现的无源/有源混合集成器件。Significance The development of photonic integration technology provides an effective approach to constructing communication,sensing,computing,and information processing devices with high performance,low cost,scalability,and reliability.Among various material platforms,lithium niobate(LN)has long been considered one of the most suitable materials for realizing photonic integrated circuits(PICs).It possesses superior optical properties,including a wide transparent window(0.35-5μm),large nonlinear/electro-optic coefficients,and strong acousto-optic effects.Significant progress has been made in the fabrication process of thin film LN(TFLN)wafers,which has laid a material foundation for manufacturing photonic devices with high refractive index contrast and strong light field confinement.To date,researchers have achieved a wide range of photonic integrated functional bricks on TFLN,such as modulators,optical frequency converters,splitters,quantum light sources,and delay lines.These devices have demonstrated notable photonic characteristics,including low transmission loss,high-speed controllability,efficient optical frequency conversion,and low energy consumption.However,due to the lack of optical gain characteristics in LN crystals themselves,it is challenging to directly fabricate essential components for on-chip integration,such as micro-lasers and optical amplifiers,on TFLN wafers.One approach to achieving optical gain on TFLN is by doping gain media within the TFLN film.Rare-earth iondoped(REI-doped)TFLN has been employed to realize on-chip micro-lasers and optical amplifiers at different wavelengths,such as around 1550 nm and 1030 nm.The specific working wavelength is determined by the intrinsic optical spectra of the rare-earth-doped ions.Although active integration of TFLN photonic devices is still in its early stages,the exceptional optical properties of LN crystals,combined with low-loss photonic chip fabrication techniques and innovative device designs,will endow on-chip TFLN photonic devices with unparalle
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3