基于排队网络模型的机场航班延误预测  被引量:3

Airport Flight Delay Prediction Based on Queuing Network Model

在线阅读下载全文

作  者:李明捷[1] 黄欣宁 吕晨辉 王涛 LI Ming-jie;HUANG Xin-ning;LÜChen-hui;WANG Tao(School of Airport,Civil Aviation Flight University of China,Guanghan 618307,China)

机构地区:[1]中国民用航空飞行学院机场学院,广汉618307

出  处:《科学技术与工程》2023年第27期11886-11891,共6页Science Technology and Engineering

基  金:国家自然科学基金民航联合基金(U1733127)。

摘  要:机场航班量不断增长,必然会带来机场高峰时段延误水平的增加。因此机场延误水平的科学预测对确保机场运行效率具有重要意义。首先根据航空器运行特性建立机场排队网络模型;然后利用Lempel-Ziv算法计算不同时间尺度的航班量时间序列复杂度,确定刻画航班延误的小时间尺度,由此确定排队网络模型参数,并用实例进行验证;最后运用AirTop仿真软件以全天平均延误、高峰小时平均延误作为关键指标,仿真得出机场延误水平变化趋势。通过将仿真数据与计算结果进行对比分析发现,机场排队网络模型能够较好地反映真实情况下的机场延误水平;而选用小时间尺度15 min进行机场排队网络模型参数计算,结果更贴近真实机场延误水平。The increasing volume of airport flights inevitably brings about the increase of airport delay level during peak hours,so the scientific prediction of airport delay level is of great significance to ensure the efficiency of airport operation.Firstly an airport queuing network model was established based on aircraft operation characteristics.Then the Lempel-Ziv algorithm was used to calculate the complexity of flight time series at different time scales,the small time scale was determined to portray flight delays.Thus,the queuing network model parameters were determined and verified by example.Finally,the AirTop simulation software was used to simulate the trend of airport delay level with the average delay of the whole day and the average delay of the peak hour as the key indicators.By comparing the simulated data with the calculated results,it is found that the airport queuing network model can better reflect the real airport delays.And the small time scale of 15 min is chosen for the calculation of airport queuing network model parameters,the results are closer to the real airport delay level.

关 键 词:机场排队网络 Lempel-Ziv算法 机场延误水平 时间序列 

分 类 号:V351[航空宇航科学与技术—人机与环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象